
8

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries)

ALVIN CHEUNG, University of Washington
SAMUEL MADDEN and ARMANDO SOLAR-LEZAMA, MIT CSAIL

Many web applications store persistent data in databases. During execution, such applications spend a
significant amount of time communicating with the database for retrieval and storing of persistent data
over the network. These network round-trips represent a significant fraction of the overall execution time
for many applications (especially those that issue a lot of database queries) and, as a result, increase their
latency. While there has been prior work that aims to eliminate round-trips by batching queries, they are
limited by (1) a requirement that developers manually identify batching opportunities, or (2) the fact that
they employ static program analysis techniques that cannot exploit many opportunities for batching, as
many of these opportunities require knowing precise information about the state of the running program.

In this article, we present SLOTH, a new system that extends traditional lazy evaluation to expose query
batching opportunities during application execution, even across loops, branches, and method boundaries.
Many such opportunities often require expensive and sophisticated static analysis to recognize from the
application source code. Rather than doing so, SLOTH instead makes use of dynamic analysis to capture
information about the program state and, based on that information, decides how to batch queries and
when to issue them to the database. We formalize extended lazy evaluation and prove that it preserves
program semantics when executed under standard semantics. Furthermore, we describe our implementation
of SLOTH and our experience in evaluating SLOTH using over 100 benchmarks from two large-scale open-source
applications, in which SLOTH achieved up to a 3× reduction in page load time by delaying computation using
extended lazy evaluation.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications

General Terms: Performance, Languages

Additional Key Words and Phrases: Application performance, lazy evaluation, query optimization

ACM Reference Format:
Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. 2016. Sloth: Being lazy is a virtue (when
issuing database queries). ACM Trans. Database Syst. 41, 2, Article 8 (June 2016), 42 pages.
DOI: http://dx.doi.org/10.1145/2894749

1. INTRODUCTION

Many web applications are backed by database servers that are physically separated
from the servers hosting the application. Such applications are usually hosted on an
application server, interact with users via webpages, and store persistent data in a
database server. Even though the application server and the database server tend
to reside in close proximity (e.g., within the same data center), a typical page load

This work is supported by the Intel Science and Technology Center for Big Data and the National Science
Foundation, under grant SHF-1116362 and SHF-1139056.
Authors’ addresses: A. Cheung, Computer Science & Engineering, University of Washington, Box 352350,
Seattle, WA 98195; email: akcheung@cs.washington.edu; S. Madden and A. Solar-Lezama, Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge,
MA 02139; emails: {madden, asolar}@csail.mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/06-ART8 $15.00
DOI: http://dx.doi.org/10.1145/2894749

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

http://dx.doi.org/10.1145/2894749
http://dx.doi.org/10.1145/2894749

8:2 A. Cheung et al.

spends a significant amount of time issuing queries and waiting for network round-trips
to complete, with a consequent increase in application latency. The situation is exacer-
bated by object-relational mapping (ORM) frameworks such as Hibernate and Django,
which access the database by manipulating native objects rather than issuing SQL
queries. These frameworks automatically translate accesses to objects into SQL, often
resulting in multiple queries (thus round-trips) to reconstruct a single object. For ex-
ample, with the applications used in our experiments, we found that many webpages
spend 50% or more of their time waiting on query execution and network communica-
tion as they load, even with the application and database servers hosted in the same
data center.

Latency is important for many reasons. First, even hundreds of milliseconds of ad-
ditional latency can dramatically increase the dissatisfaction of web application users.
For example, a 2010 study by Akamai suggested that 57% of users will abandon a
webpage that takes more than 3s to load [Akamai 2010]. As another example, Google
reported in 2006 that an extra 0.5s of latency reduced the overall traffic by 20% [Linden
2006]. Second, ORM frameworks can greatly increase load times by performing addi-
tional queries to retrieve objects that are linked to the one that was initially requested;
as a result, a few tens of milliseconds per object can turn into seconds of additional la-
tency for an entire webpage [StackOverflow 2014b, 2014c, 2014d, 2014e]. Though some
techniques (such as Hibernate’s “eager fetching”) aim to mitigate this, they are far
from perfect, as we discuss later. Finally, decreasing latency often increases through-
put: as each request takes less time to complete, the server can process more requests
simultaneously.

There have been two general approaches for programs to reduce application latency
due to database queries: (i) hide this latency by overlapping communication and com-
putation, or (ii) reduce the number of round-trips by fetching more data in each one.
Latency hiding is most commonly achieved by prefetching query results so that the com-
munication time overlaps with computation and the data is ready when the application
really needs it. Both of these techniques have been explored in prior research. Latency
hiding, which generally takes the form of asynchronously “prefetching” query results
so that they are available when needed by the program, was explored by Ramachandra
and Sudarshan [2012], who employed static analysis to identify queries that will be ex-
ecuted unconditionally by a piece of code. The compiler can then transform the code so
that these queries are issued as soon as their query parameters are computed and be-
fore their results are needed. Unfortunately, for many web applications, there is simply
not enough computation to perform between the point when the query parameters are
available and the query results are used, which reduces the effectiveness of this tech-
nique. Also, if the queries are executed conditionally, prefetching queries requires spec-
ulation about program execution, and can end up issuing additional useless queries.

In contrast to prefetching, most ORM frameworks allow users to specify “fetching
strategies” that describe when an object or members of a collection should be fetched
from the database. The goal of such strategies is to allow developers to indirectly control
the number of network round-trips. The default strategy is usually “lazy fetching,” in
which each object is fetched from the database only when it is used by the application.
This means that there is a round-trip for every object, but the only objects fetched
are those that are certainly used by the application. The alternative “eager” strategy
causes all objects related to an object (e.g., that are part of the same collection or
referenced by a foreign key) to be fetched as soon as the object is requested. The eager
strategy reduces the number of round-trips to the database by combining the queries
involved in fetching multiple entities (e.g., using joins). Of course, this eager strategy
can result in fetching objects that are not needed and, in some cases, can actually incur
more round-trips than lazy fetching. For this reason, deciding when to label entities as
“eager” is a nontrivial task, as evidenced by the number of questions on online forums

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:3

regarding when to use which strategy, with “it depends” being the most common answer.
In addition, for large-scale projects that involve multiple developers, it is difficult for
the designer of the data-access layer to predict how entities will be accessed in the
application and, therefore, which strategy should be used. Finally, fetching strategies
are very specific to ORM frameworks and fail to address the general problem, which is
also present in non-ORM applications.

This article describes a new approach for reducing the latency of database-backed
applications that combines many features of the two strategies described. The goal
is to reduce the number of round-trips to the database by batching queries issued by
the application. Rather than relying entirely on static analysis, as in the case of prior
work, the key idea is to collect queries using a new technique that we call extended
lazy evaluation (or simply “lazy evaluation” in the rest of the article). As the applica-
tion executes, queries are batched into a query store instead of being executed right
away. In addition, nondatabase-related computation is delayed until it is absolutely
necessary. As the application continues to execute, multiple queries are accumulated
in the query store. When a value that is derived from query results is finally needed
(say, when it is printed on the console), then all queries that are registered with the
query store are executed by the database in a single batch. The results are then used
to evaluate the outcome of the computation. The technique is conceptually related to
traditional lazy evaluation as supported by functional languages (either as the default
evaluation strategy or as program constructs) such as Haskell, Miranda, Scheme, and
OCaml [Jones and Santos 1998]. In traditional lazy evaluation, there are two classes of
computations: those that can be delayed and those that force the delayed computation
to take place because they must be executed eagerly. In our extended lazy evaluation,
queries constitute a third kind of computation because, even though their actual exe-
cution is delayed, they must eagerly register themselves with the batching mechanism
so that they can be issued together with other queries in the batch.

Compared to query extraction using static analysis [Wiedermann et al. 2008; Iu et al.
2010; Cheung et al. 2013], our approach batches queries dynamically as the program
executes, and defers computation as long as possible to maximize the opportunity to
overlap query execution with program evaluation. As a result, it is able to batch queries
across branches and even method calls, which results in larger batch sizes and fewer
database round-trips. Unlike fetching strategies, our approach is not fundamentally
tied to ORM frameworks. Moreover, we do not require developers to label entities as
eager or lazy, as our system only brings in entities from the database as they are
originally requested by the application. Note that our approach is orthogonal to other
multiquery optimization approaches that optimize batches of queries [Giannikis et al.
2012]; we do not merge queries to improve their performance, nor do we depend on
many concurrent users issuing queries to collect large batches. Instead, we optimize
applications to extract batches from a single client, and issue those in a single round-
trip to the database; the database still executes each of the query statements in the
batch individually.

We have implemented this approach in a new system called SLOTH. The system is
targeted to general applications written in an imperative language that use databases
for persistent storage. SLOTH consists of two components: a compiler and a number
of libraries for runtime execution. Unlike traditional compilers, SLOTH compiles the
application source code to execute using lazy evaluation, and the runtime libraries
implement mechanisms for batching multiple queries as the application executes. This
article makes the following contributions:

—We devise a new mechanism to batch queries in database-backed applications based
on a combination of a new “lazyifying” compiler, and combine static and dynamic

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:4 A. Cheung et al.

program analysis to generate the queries to be batched. We formalize lazy evaluation
in the presence of database queries, and prove that our transformation preserves the
semantics of the original program, including transaction boundaries.

—We propose a number of optimizations to improve the quality of the compiled lazy
code.

—We built and evaluated SLOTH using real-world web applications totaling over 300k
lines of code. Our results show that SLOTH achieves a median speedup between 1.3×
and 2.2× (depending on network latency), with maximum speedups as high as 3.1×.
Reducing latency also improves maximum throughput of our applications by 1.5×.

While web applications represent one kind of application that uses databases for per-
sistent storage, we believe our techniques are applicable to other database applications
as well. For instance, our extended lazy evaluation techniques can be used to optimize
applications that interact with databases via interfaces such as JDBC [Andersen 2014]
and ODBC [Microsoft 2015], and similarly for applications that issue individual queries
to the database. An interesting area for future research is to apply such techniques
beyond database applications, such as batching remote procedure calls in distributed
computing.

In the following, we first describe how SLOTH works through a motivating example in
Section 2. Then, we explain our compilation strategy in Section 3. Next, we discuss the
optimizations that are used to improve generated code quality in Section 4, followed by a
formalization of the semantics of extended lazy evaluation in Section 5. We describe our
prototype implementation in Section 6, and report our experimental results using both
real-world benchmarks in Section 7. We review related work in Section 8 and present
our conclusions in Section 9. The current article is an extension of the previously
published conference version [Cheung et al. 2014a]. In particular, in this article, we
describe our experiments in detail. Furthermore, we describe a formalism to model
program execution in SLOTH, and prove semantic correspondence between the original
program execution and that translated by SLOTH.

2. OVERVIEW

In this section, we give an overview of SLOTH using the code fragment shown in Figure 1.
The fragment is abridged from OpenMRS [2014], an open-source patient-record web
application written in Java. It is hosted using the Spring web framework and uses the
Hibernate ORM library to manage persistent data. The application has been deployed
in numerous countries worldwide since 2006.

The application is structured using the Model-View-Control (MVC) pattern. The code
fragment shown in Figure 1 is part of a controller that builds a model to be displayed
by the view after construction. The controller is invoked by the web framework when
a user logs in to the application to view the dashboard for a particular patient. It first
creates a model (a HashMap object), populates it with appropriate patient data based on
the logged-in user’s privileges, and returns the populated model to the web framework.
The web framework then passes the partially constructed model to other controllers
that may add additional data and, finally, to the view creator to generate HTML output.

As written, this code fragment can issue up to four queries; the queries are issued by
calls of the form get... on the data-access objects, that is, the Service objects, following
the web framework’s convention. The first query in Line 8 fetches the Patient object
that the user is interested in displaying and adds it to the model. The code then issues
queries on Lines 12 and 14, and Line 17 to fetch various data associated with the
patient, with the retrieved data all added to the model.

It is important to observe that, of the four round-trips that this code can incur, only
the first one is essential—without the result of that first query, the other queries cannot

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:5

Fig. 1. Code fragment abridged from OpenMRS.

be constructed. In fact, the results from the other queries are stored only in the model
and not used until the view (i.e., the webpage that corresponds to the dashboard) is
actually rendered. This means that, in principle, the developer could have collected the
last three queries in a single batch and sent it to the database in a single round-trip.
The developer could have gone even further, collecting in a single batch all the queries
involved in building the model until the data from any of the queries in the batch is
really needed—either because the model needs to be displayed or because the data is
needed to construct a new query. Manually transforming the code in this way would
have a big impact on the number of round-trips incurred by the application, but would
also impose an unacceptable burden on the developer. In the rest of the section, we
describe how SLOTH automates such a transformation with only minimal changes to
the original code, and requires no extra work from the developer.

An important ingredient to automatically transform the code to batch queries as
described earlier is lazy evaluation. In most traditional programming languages, the
evaluation of a statement causes that statement to execute; thus, any function calls
made by that statement are executed before the program proceeds to evaluating the
next statement. In lazy evaluation, by contrast, the evaluation of a statement does
not cause the statement to execute; instead, the evaluation produces a thunk: a place-
holder that stands for the result of that computation, and it also remembers what the
computation was. The only statements that are executed immediately upon evaluation
are those that produce output (e.g., printing on the console, generating the textual
representation of a webpage) or those that cause an externally visible side effect (e.g.,
reading from files). When such a statement executes, the thunks corresponding to
all the values that flow into that statement will be forced, meaning that the delayed
computation that they represented will finally be executed.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:6 A. Cheung et al.

Fig. 2. Operational diagram of the example code fragment.

The key idea behind our approach is to modify the basic machinery of lazy evaluation
so that, when a thunk is created, any queries performed by the statement represented
by the thunk are added to a query store kept by the runtime in order to batch queries.
Because the computation has been delayed, the results of those queries are not yet
needed; thus, the queries can accumulate in the query store until any thunk that
requires the result of such queries is forced. At that point, the entire batch of queries
is sent to the database for processing in a single round-trip. This process is illustrated
in Figure 2. During program execution, Line 8 issues a call to fetch the Patient object
that corresponds to patientId (Q1). Rather than executing the query, SLOTH compiles
the call to register the query with the query store instead. The query is recorded in
the current batch within the store (Batch 1), and a thunk is returned to the program
(represented by the gray box in Figure 2). Then, in Line 12, the program needs to
access the patient object p to generate the queries to fetch the patient’s encounters
(Q2) followed by visits in Line 14 (Q3). At this point, the thunk p is forced, Batch 1
is executed, and its results (rs1) are recorded in the query cache in the store. A new
nonthunk object p’ is returned to the program upon deserialization from rs1, and p’ is
memoized in order to avoid redundant deserializations. After this query is executed,
Q2 and Q3 can be generated using p’ and are registered with the query store in a new
batch (Batch 2). Unlike the patient query, however, Q2 and Q3 are not executed within
handleRequest since their results are not used (thunks are stored in the model map in
Lines 12 and 16). Note that, even though Line 15 uses the results of Q3 by filtering it,

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:7

our analysis determines that the operation does not have externally visible side effects
and is thus delayed, allowing Batch 2 to remain unexecuted. This leads to batching
another query in Line 17 that fetches the patient’s active visits (Q4), and the method
returns.

Depending on the subsequent program path, Batch 2 might be appended with further
queries. Q2, Q3, and Q4 may be executed later when the application needs to access
the database to get the value from a registered query, or they might not be executed at
all if the application has no further need to access the database.

This example shows how SLOTH is able to perform much more batching than either
the existing “lazy” fetching mode of Hibernate or prior work using static analysis
[Ramachandra and Sudarshan 2012]. Hibernate’s lazy fetching mode would have
to evaluate the results of the database-accessing statements such as getVisitsBy-
Patient(p) on Line 14, as its results are needed by the filtering operation, leaving no
opportunity to batch. In contrast, SLOTH places thunks into the model and delays the fil-
tering operation, which avoids evaluating any of the queries. This enables more queries
to be batched and executed together in a subsequent trip to the database. Static anal-
ysis also cannot perform any batching for these queries, because it cannot determine
what queries need to be evaluated at compile time as the queries are parameterized
(such as by the specific patient id that is fetched in Line 8), and also because they are
executed conditionally only if the logged-in user has the required privilege.

There are some languages, such as Haskell, that execute lazily by default, but Java
has no such support. Furthermore, we want to tightly control how lazy evaluation
takes place so that we can calibrate the trade-offs between execution overhead and
the degree of batching achieved by the system. We would not have such tight control
if we were working under an existing lazy evaluation framework. Instead, we rely on
our own SLOTH compiler to transform the code for lazy evaluation. At runtime, the
transformed code relies on the SLOTH runtime to maintain the query store. The run-
time also includes a custom JDBC driver that allows multiple queries to be issued to
the database in a single round-trip, as well as extended versions of the application
framework, ORM library, and application server that can process thunks (we currently
provide extensions to the Spring application framework, the Hibernate ORM library,
and the Tomcat application server, to be described in Section 6). For monolithic ap-
plications that directly use the JDBC driver to interact with the database, developers
just need to change such applications to use the SLOTH batch JDBC driver instead. For
applications hosted on application servers, developers only need to host them on the
SLOTH extended application server instead after compiling their application with the
SLOTH compiler.

3. COMPILING TO LAZY SEMANTICS

In this section, we describe how SLOTH compiles the application source code to be
evaluated lazily. Figure 3 shows the overall architecture of the SLOTH compiler, the
details of which are described in this section and the next.

3.1. Code Simplification

To ease the implementation, the SLOTH compiler first simplifies the input source code.
All loop constructs are converted to while (true), where the original loop condition is
converted into branches with control flow statements in their bodies, and assignments
are broken down to have at most one operation on their right-hand side. Thus, an
assignment such as x = a + b + c; will be translated to t = a + b; x = t + c;, with t
being a temporary variable. Type parameters (generics) are also eliminated, and inner
and anonymous classes are extracted into stand-alone ones.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:8 A. Cheung et al.

Fig. 3. Architecture of the SLOTH compiler, with * marking those components used for optimization.

3.2. Thunk Conversion

After simplification, the SLOTH compiler converts each statement of the source code
into extended lazy semantics. For clarity, in the following, we present the compilation
through a series of examples using concrete Java syntax. However, beyond recognizing
methods that issue queries (such as those in the JDBC API), our compilation is not
Java-specific, and we formalize the compilation process in Section 5 using an abstract
kernel language.

In concrete syntax, each statement in the original program is replaced with an allo-
cation of an anonymous class derived from the abstract Thunk class after compilation,
with the code for the original statement placed inside a new force class method. To
“evaluate” the thunk, we invoke this method, which executes the original program
statement and returns the result (if any). For example, the statement

is compiled into lazy semantics as

There are a few points to note in the example. First, all variables are converted
into Thunk types after compilation. For instance, x has type Thunk<Integer> after
compilation (the type parameter int means that the thunk will return an integer
upon evaluation), and likewise for c and d. As a consequence, all variables need to

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:9

be evaluated before carrying out the actual computation inside the body of force.
Second, to avoid redundant evaluations, we memoize the return value of force so
that subsequent calls to force will return the memoized value instead (for brevity
purposes, details are not shown here).

While the compilation is relatively straightforward, the mechanism presented earlier
can incur substantial runtime overhead, as the compiled version of each statement
incurs allocation of a Thunk object, and all computations are converted to method calls.
Section 4 describes several optimizations that we have devised to reduce the overhead.
Section 7.6 quantifies the overhead of lazy semantics, which shows that, despite some
overhead, it is generally much less than the savings we obtain from reducing round-
trips.

3.3. Compiling Query Calls

Method calls that issue database queries, such as JDBC executeQuery calls and calls
to ORM library APIs that retrieve entities from persistent storage, are compiled dif-
ferently from ordinary method calls. In particular, we want to extract the query that
would be executed from such calls and record it in the query store so that it can be
issued when the next batch is sent to the database. To facilitate this, we designed a
query store that consists of the following components: (a) a buffer that stores the cur-
rent batch of queries to be executed and associates a unique id with each query, and
(b) a result store that contains the results returned from batches previously sent to the
database within the same transaction. The result store is a map from the unique query
identifier to its result set. The query store API consists of two methods:

—QueryId registerQuery(String sql): Add the sql query to the current batch of queries
and return a unique identifier to the caller. If sql is an INSERT, UPDATE, ABORT, COMMIT,
or SELECT. . . INTO, then the current batch will be immediately sent to the database
to ensure that these updates are not left lingering in the query store. On the other
hand, the method avoids introducing redundant queries into the batch; thus, if sql
textually matches another query already in the query buffer, the identifier of the
first query will be returned.

—ResultSet getResultSet(QueryId id): Check if the result set associated with id re-
sides in the result store; if so, return the cached result. Otherwise, issue the current
batch of queries in a single round-trip, process the result sets by adding them to the
result store, and return the result set that corresponds to id.

To use the query store, method calls that issue database queries are compiled to a
thunk that passes the SQL query to be executed in the constructor. The thunk registers
the query to be executed with the query store using registerQuery in its constructor
and stores the returned QueryId as its member field. The force method of the thunk
then calls getResultSet to get the corresponding result set. For ORM library calls, the
result sets are passed to the appropriate deserialization methods in order to convert
the result set into heap objects that are returned to the caller.

Note that creating thunks associated with queries require evaluating all other
thunks that are needed in order to construct the query itself. For example, consider
Line 8 of Figure 1, which makes a call to the database to retrieve a particular patient’s
data:

In the lazy version of this fragment, patientId is converted to a thunk that is evalu-
ated before the SQL query can be passed to the query store:

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:10 A. Cheung et al.

Here, getQuery calls an ORM library method to generate the SQL string and substitutes
the evaluated patientId in it, and deserialize reconstructs an object from an SQL
result set returned by the database.

3.4. Compiling Method Calls

In the spirit of laziness, it would be ideal to delay executing method calls as long as
possible (in the best case, the result from the method call is never needed; therefore,
we do not need to execute the call). However, method calls might have side effects that
change the program heap, for instance, changing the values of heap objects that are
externally visible outside of the application, such as a global variable. For the purpose of
thunk compilation, we divide methods into two categories: “external” methods are those
for which the SLOTH compiler does not have source-code access; we refer to the other
methods as “internal” ones. Method labeling is done as one of the analysis passes in the
SLOTH compiler; the thunk conversion pass uses the method labels during compilation.

Internal Methods without Side Effects. This is the ideal case in which we can delay
executing the method. The call is compiled to a thunk with the method call as the body
of the force method. Any return value of the method is assigned to the thunk. For
example, if int foo(Object x, Object y) is an internal method with no side effects,
then

is compiled to

Internal Methods with Externally Visible Side Effects. We cannot defer the exe-
cution of such methods due to their externally visible side effects. However, we can still
defer the evaluation of its arguments until necessary inside the method body. Thus,
the SLOTH compiler generates a special version of the method in which its parameters
are thunk values, and the original call sites are compiled to calling the special version
of the method instead. For example, if int bar(Object x) is such a method, then

is compiled to

with the declaration of bar thunk as Thunk<Integer> bar thunk(Thunk<Object> x).

External Methods. We cannot defer the execution of external methods unless we
know that they are side-effect free. Since we do not have access to their source code,
the SLOTH compiler does not change the original method call during compilation, except
for forcing the arguments and receiver objects as needed. As an example, Line 3 in
Figure 1,

,

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:11

is compiled to

.

As discussed earlier, since the types of all variables are converted to thunks, the
(nonthunk) return value of external method calls is stored in LiteralThunk objects
that simply returns the nonthunk value when force is called, as shown in the earlier
example.

3.5. Class Definitions and Heap Operations

For classes that are defined by the application, the SLOTH compiler changes the type of
each member field to Thunk to facilitate accesses to field values under lazy evaluation.
For each publicly accessible finalfield, the compiler adds an extra field with the original
type, with its value set to the evaluated result of the corresponding thunk-converted
version of the field. These fields are created so that they can be accessed from external
methods. Publicly accessible nonfinal fields cannot be made lazy.

In addition, the SLOTH compiler changes the type of each parameter in method dec-
larations to Thunk to facilitate method call conventions discussed in Section 3.4. Like
public fields, since public methods can potentially be invoked by external code (e.g., the
web framework that hosts the application or by JDK methods such as calling equals
while searching for a key within a Map object), the SLOTH compiler generates a “dummy”
method that has the same declaration (in terms of method name and parameter types)
as the original method. The body of such dummy methods simply invokes the thunk-
converted version of the corresponding method. If the method has a return value, then
it is evaluated on exit. For instance, the following method,

,

is compiled to two methods by the SLOTH compiler:

With that in mind, the compiler translates object field reads to simply return thunks.
However, updates to heap objects are not delayed in order to ensure consistency of
subsequent heap reads. In order to carry out a field write, however, the receiver object
needs to be evaluated if it is a thunk. Thus, the statement

is compiled to

Notice that, while the target of the heap write is evaluated (obj in the example), the
value that is written (x in the example) is a thunk object, meaning that it can represent
computation that has not been evaluated yet.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:12 A. Cheung et al.

3.6. Evaluating Thunks

In previous sections, we discussed the basic compilation of statements into lazy se-
mantics using thunks. In this section, we describe when thunks are evaluated, that is,
when the original computation that they represent is actually carried out.

As mentioned in the last section, the target object in field reads and writes are
evaluated when encountered. However, the value of the field and the object that is
written to the field can still be thunks. The same is applied to array accesses and
writes, in which the target array and index are evaluated before the operation.

For method calls in which the execution of the method body is not delayed, the
target object is evaluated prior to the call if the called method is nonstatic. While
our compiler could have deferred the evaluation of the target object by converting all
member methods into static class methods, it is likely that the body of such methods
(or further methods that are invoked inside the body) accesses some fields of the target
object and will end up evaluating the target object. Thus, it is unlikely that there are
any significant savings in delaying such an evaluation. Finally, when calling external
methods, all parameters are evaluated as discussed.

In the basic compiler, all branch conditions are evaluated when if statements are
encountered. Recall that all loops are canonicalized into while (true) loops with the
loop condition rewritten using branches. We present an optimization to this restriction
in Section 4.2. Similarly, statements that throw exceptions, obtain locks on objects
(synchronized), or spawn new threads of control are not deferred. Finally, thunk evalu-
ations can also happen when compiling statements that issue queries, as discussed in
Section 3.3.

3.7. Limitations

There are three limitations that we do not currently handle. First, because of delayed
execution, exceptions that are thrown by the original program might not occur at the
same program point in the SLOTH-compiled version. For instance, the original program
might throw an exception in a method call, but in the SLOTH-compiled version, the
call might be deferred until the thunk corresponding to the call is evaluated. While
the exception will still be thrown eventually, the SLOTH-compiled program might have
executed more code than the original program before hitting the exception.

Second, since the SLOTH compiler changes the representation of member fields in each
internal class, we currently do not support custom deserializers. For instance, one of the
applications used in our experiments reads in an XML file that contains the contents
of an object before the application source code is compiled by SLOTH. As a result, the
compiled application fails to re-create the object, as its representation has changed. We
manually fixed the XML file to match the expected types in our benchmark. In general,
we do not expect this to be common practice, given that Java already provides its own
object serialization routines.

Finally, SLOTH currently has limited support for dynamically loaded code via reflec-
tion. If the loaded code has previously been compiled by SLOTH, then the queries issued
within the loaded code will be buffered as usual. Otherwise, the issued queries will
not be buffered. Implementing thunk logic into the bytecode loader will allow SLOTH to
fully support reflection.

4. BEING EVEN LAZIER

In the previous section, we described how SLOTH compiles source code into lazy seman-
tics. However, as noted in Section 3.2, there can be substantial overhead if we follow
the compilation procedure naı̈vely. In this section, we describe three optimizations.
The goal of these optimizations is to generate more efficient code and to further defer

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:13

Fig. 4. Abstract language to model input programs.

computation. As discussed in Section 2, deferring computation delays thunk evalua-
tions, which, in turn, increases the chances of obtaining larger query batches during
execution time. As in the previous section, we describe the optimizations using concrete
Java syntax for clarity, although they can all be formalized using the language to be
described in Figure 4.

4.1. Selective Compilation

The goal of compiling to lazy semantics is to enable query batching. Obviously, the
benefits are observable only for the parts of the application that actually issue queries;
otherwise, compiling to lazy semantics will simply add runtime overhead for the re-
maining parts of the application. Thus, the SLOTH compiler analyzes each method to
determine whether it can possibly access the database. The analysis is a conservative
one that labels a method as using persistent data if it

—issues a query in its method body.
—calls another method that uses persistent data. Because of dynamic dispatch, if the

called method is overridden by any of its subclasses, we check if any of the overridden
versions is persistent and, if so, we label the call to be persistent.

—accesses object fields that are stored persistently. This is done by examining the static
object types that are used in each method, and checking whether it uses an object
whose type is persistently stored. The latter is determined by checking for classes
that are populated by query result sets in its constructor (in the case of JDBC) or by
examining the object mapping configuration files for ORM frameworks.

The analysis is implemented as an interprocedural, flow-insensitive dataflow anal-
ysis [Kildall 1973]. It first identifies the set of methods m containing statements that
perform any of the mentioned items. Then, any method that calls m is labeled as per-
sistent. This process continues until all methods that can possibly be persistent are
labeled. For methods that are not labeled as persistent, the SLOTH compiler does not
convert their bodies into lazy semantics—they are compiled as is. For the two appli-
cations used in our experiments, our results show about 28% and 17% of the methods
do not use persistent data, and those are mainly methods that handle application
configuration and output page formatting (see Section 7.5 for details).

4.2. Deferring Control Flow Evaluations

In the basic compiler, all branch conditions are evaluated when an if statement is
encountered, as discussed in Section 3.6. The rationale is that the outcome of the
branch affects the subsequent program path; hence, we need the branch outcome in
order to continue program execution. However, we can do better based on the intuition
that, if neither branch of the condition creates any changes to the program state that
are externally visible outside of the application, then the entire branch statement can
be deferred as a thunk like other simple statements. Formally, if none of the statements

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:14 A. Cheung et al.

within the branch contains calls that issue queries or thunk evaluations as discussed
in Section 3.6 (recall that thunks need to be evaluated when their values are needed in
operations that cannot be deferred, such as making changes to the program state that
are externally visible), then the entire branch statement can be deferred. For instance,
in the code fragment

,

the basic compiler would compile the code fragment into

,

which could result in queries being executed as a result of evaluating c. However, since
the bodies of the branch statements do not make any externally visible state changes,
the whole branch statement can be deferred as

where the evaluation of c is further delayed. ThunkBlock2 implements the ThunkBlock
class (just like Thunk0 is derived from the Thunk class). The ThunkBlock class is similar
to the Thunk class, except that it defines methods (not shown here) that return thunk
variables defined within the block, such as a in the example. Calling force on any of the
thunk outputs from a thunk block will evaluate the entire block, along with all other
output objects that are associated with that thunk block. In sum, this optimization
allows us to further delay thunk evaluations, which, in turn, can increase query batch
sizes.

To implement this optimization, the SLOTH compiler first iterates through the body
of the if statement to determine if any thunk evaluation takes place, and all branches
that are deferrable are labeled. During thunk generation, deferrable branches are
translated to ThunkBlock objects, with the original statements inside the branches
constituting the body of the force methods. Variables defined inside the branch are
assigned to output thunks, as described earlier. The same optimization is applied to
defer loops as well. Recall that all loops are converted into while (true) loops with em-
bedded control flow statements (break and continue) inside their bodies. Using similar
logic, a loop can be deferred and compiled to a ThunkBlock if all statements inside the
loop body can be deferred.

4.3. Coalescing Thunks

The basic compilation described in Section 3.2 results in new Thunk objects being cre-
ated for each computation that is delayed. Due to the temporary variables that are
introduced as a result of code simplification, the number of operations (thus the num-
ber of Thunk objects) can be much larger than the number of lines of Java code. This

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:15

can substantially slow down the compiled application. As an optimization, the thunk
coalescing pass merges consecutive statements into thunk blocks to avoid allocation
of thunks. The idea is that, if for two consecutive statements s1 and s2, and that s1
defines a variable v that is used in s2 and not anywhere after in the program, then
we can combine s1 and s2 into a thunk block with s1 and s2 inside its force method
(provided that both statements can be deferred as discussed in Section 3). This way,
we avoid creating the thunk object for v that would be created under basic compilation.
As an illustrative example, consider the following code fragment:

Under basic compilation, the code fragment is compiled to

Note that three thunk objects are created within the code fragment, with the original
code performed in the force methods inside the definitions of classes Thunk0, Thunk1,
and Thunk2, respectively. However, in this case, the variables e and f are not used
anywhere, that is, they are no longer live, after Line 5. Thus, we can combine the first
three statements into a single thunk, resulting in the following:

The optimized version reduces the number of object allocations from 3 to 2: one
allocation for ThunkBlock3 and another for the Thunk object representing g that is created
within the thunk block. In this case, the force method inside the ThunkBlock3 class
consists of statements that perform the addition in the original code. As described
earlier, the thunk block keeps track of all thunk values that need to be output, in this
case, the variable g.

This optimization is implemented in multiple steps in the SLOTH compiler. First, we
identify variables that are live at each program statement. Live variables are computed
using a dataflow analysis that iterates through program statements in a backwards
manner to determine the variables that are used at each program statement (therefore,
must be live).

After thunks are generated, the compiler iterates through each method to combine
consecutive statements into thunk blocks. The process continues until no statements
can be further combined within each method. After that, the compiler examines the
force method of each thunk block and records the set of variables that are defined.

For each such variable v, the compiler checks to see if all statements that use v are

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:16 A. Cheung et al.

also included in the same thunk block by making use of the liveness information. If so,
it does not need to create a thunk object for v. This optimization significantly reduces
the number of thunk objects that need to be allocated, thus improves the efficiency of
the generated code, as shown in Section 7.5.

5. FORMAL SEMANTICS

We now formalize the compilation to extended lazy evaluation outlined in the last
section. For the sake of presentation, we describe the semantics in terms of an ab-
stract language that we describe in the following section. Using that language, we
furthermore prove that extended lazy evaluation preserves the semantics of the origi-
nal program. We do that by showing the correspondence of programs executed under
standard and extended lazy semantics, except for the limitations stated in Section 3.7.

5.1. An Abstract Language

Figure 4 shows the abstract language that we use to define extended lazy evaluation
semantics. The language is simple, but will help us illustrate the main principles
behind extended lazy evaluation that can be easily applied not just to Java, but to any
other object-oriented language.

The main constructs to highlight in the language are the expression R(e), which
issues a database read query derived from the value of expression e, and W(e), which
is an expressive that issues a query that can mutate the database, such as an INSERT or
UPDATE, and returns a status code that indicates whether the operation was successful.

The abstract language models the basic operations in imperative languages and is
not specific to Java. To convert the original Java source code into the abstract language,
the SLOTH compiler first simplifies the original source code, as described in Section 3.1.
Such simplifications include semantic-preserving rewrites such as breaking down com-
pound expressions and canonicalizing all loops into while (true) loops. The compiler
then translates the simplified source code into the abstract language shown earlier. In
the abstract language, we model unstructured control flow statements such as break
and continue using Boolean variables to indicate if control flow has been altered. Such
unstructured control flow statements are then translated into Boolean variable as-
signments [Zhang and D’Hollander 2004], and the statements that can be affected by
unstructured control flow (e.g., statements that follow a break statement inside a loop)
are wrapped into a conditional block guarded by the appropriate indicator Boolean
variable(s).

In addition, the language models the return value of each method using the special
variable @. Statements such as return e in the input code are translated into two
variable assignments: one that assigns to @, and another that assigns to an indicator
Boolean variable to represent the fact that control flow has been altered. Statements
that follow the original return e statement are wrapped into conditional blocks similar
to those discussed earlier for loops.

5.2. Program Model

To model program execution, we use the tuples 〈D, σ, h〉 and 〈Q, D, σ, h〉 to model the
program state under standard and extended lazy evaluation, respectively, where:

—D : v → v represents the database. It is modeled as a map that takes in an SQL query
v and returns a value, which is either a single value (e.g., the numerical value of an
aggregate) or an array of values (e.g., a set of records stored in the database).

—σ : x → e represents the environment that maps program variables to expressions.
It is used to look up variable values during program evaluation.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:17

—h : el → e represents the program heap that maps variables that can be used as
memory locations (i.e., program variables or fields) to the expression stored at that
location. We use the notation h[e] to represent looking up value stored at location e,
and h[e1, e2] to denote looking up the value stored at heap location e1 with offset e2
(e.g., a field dereference). The same notation is used to denote array value lookups
as well.

—Q : id → e represents the query store under extended lazy semantics. It maps unique
query identifiers (as discussed in Section 3.3) to the query expressions that were
registered with the query store when the respective identifier was initially created.

In addition, we define the auxiliary function update : D × v → D to model database
modifications (e.g., as a result of executing an UPDATE query). It takes in a database
D and a write query v (represented by a string value), and returns a new database.
Since the language semantics are not concerned with the details of query execution,
we model such operations as a pure function that returns a new database state.

5.3. Language Semantics

Given the abstract language, we now discuss how to evaluate each language construct
under standard execution semantics. Expression evaluation is defined through a set of
rules that takes a program state s and an expression e, and produces a new program
state along with the value of the expression. The state s of the program is represented
by a tuple (D, σ, h), where D is the database that maps queries to their result sets, σ
is the environment that maps program variables to expressions, and h is the program
heap that maps addresses to expressions.

As an example, the rule to evaluate the binary expression e1 op e2 is shown here:

〈s, e1〉 → 〈s′, v1〉 〈s′, e2〉 → 〈s′′, v2〉 v1 op v2 → v
〈s, e1 op e2〉 → 〈s′′, v〉 [Binary].

The notation above the line describes how the subexpressions e1 and e2 are evaluated
to values v1 and v2, respectively. The result of evaluating the overall expression is
shown below the line; it is the result of applying op to v1 and v2, together with the state
as transformed by the evaluation of the two subexpressions.

As another example, the evaluation of a read query R(e) must first evaluate the
query e to a query string v, then return the result of consulting the database D ′ with
this query string. Note that the evaluation of e might itself modify the database, for
example, if e involves a function call that internally issues an update query; thus, the
query v must execute on the database as it is left after the evaluation of e:

〈(D, σ, h), e〉 → 〈(D ′, σ, h′), v〉
〈(D, σ, h), R(e)〉 → 〈(D ′, σ, h′), D ′[v]〉 [Read Query].

The rest of the evaluation rules are standard, and are included in the appendix.
To describe lazy evaluation, we augment the state tuple s with the query store Q,

which maps a query identifier to a pair (q, rs) that represents the SQL query q and
its corresponding result set rs. rs is initially set to null (∅) when the pair is created.
We model thunks using the pair (σ, e), where σ represents the environment for looking
up variables during thunk evaluation, and e the expression to evaluate. In our Java
implementation the environment is implemented as fields in each generated Thunk
class, and e is the expression in the body of the force method.

As discussed in Section 3.2, to evaluate the expression e1 op e2 using lazy evaluation,
we first create thunk objects v1 and v2 for e1 and e2, respectively, then create another

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:18 A. Cheung et al.

thunk object that represents the op. Formally, this is described as

〈s, e1〉 → 〈s′, v1〉 〈s′, e2〉 → 〈s′′, v2〉
v1 = (s′, e′

1) v2 = (s′′, e′
2)

v = (σ ′ ∪ σ ′′, e′
1 op e′

2)
〈s, e1 op e2〉 → 〈s′′, v〉 [Binary (lazy)].

Note that the environment for v is the union of the environments from v1 and v2 since
we might need to look up variables stored in either of them. But the mappings stored
in σ ′ and σ ′′ (from s′ and s′′, respectively) are identical except for the mapping of e′

1 in
σ ′ and e′

2 in σ ′′. In the case in which e′
1 equals to e′

2, then the two mappings are exactly
identical.

On the other hand, as discussed in Section 3.3, under lazy evaluation, query calls
are evaluated by first forcing the evaluation of the thunk that corresponds to the query
string, then registering the query with the query store. This is formalized as

〈(Q, D, σ, h), e〉 → 〈(Q′
, D ′, σ, h′), (σ ′, e)〉 id is a fresh identifier

force (Q′
, D ′, (σ ′, e)) → 〈Q′′

, D ′′, v〉 Q′′′ = Q′′[id → (v,∅)]
〈(Q, D, σ, h), R(e)〉 → 〈(Q′′′

, D ′′, σ, h′), ([], id)〉 [Read Query (lazy)].

The force function is used to evaluate thunks, similar to that described in the earlier
examples using Java. force (Q, D, t) takes in the current database D and query store Q
and returns the evaluated thunk along with the modified query store and database.
When force encounters an id in a thunk, it checks the query store to see if that id
already has a result associated with it. If it does not, it issues as a batch all the queries
in the query store that do not yet have results associated with them, then assigns
those results once they arrive from the database. The full specification of force and
other rules for evaluating under extended lazy semantics are included in the appendix.

5.4. Soundness of Extended Lazy Evaluation

We now show that extended lazy semantics preserves the semantics of the original
program that is executed under standard evaluation, except for the limitations such
as exceptions that are described in Section 3.7. We show that fact using the following
theorem:

THEOREM 1 (SEMANTIC CORRESPONDENCE). Given a program p and initial states
Q0, D0, σ0 and h0. If �〈D0, σ0, h0〉, p� → 〈DS, σS, hS〉 under standard evaluation, and
�〈Q0, D0, σ0, h0〉, p� → 〈QE, DE, σE, hE〉 under extended lazy evaluation, then
∀x ∈ σS . σS[x] = force (QE, DE, σE[x]) and ∀x ∈ hS . hS[x] = force (QE, DE, hE[x]).
In other words, the program states are equivalent after we evaluate all the thunks in σE.

Here, the notation �s, p� → s′ means that we evaluate program p under state s, which
results in a new state s′. For presentation purposes, we use P(SS, SL) to denote that the
state SS = 〈DS, σS, hS〉 under standard evaluation and the state SL = 〈QL, DL, σL, hL〉 un-
der extended lazy evaluation satisfy the semantic correspondence property presented
earlier. To prove this, we use structural induction on the abstract language. Since most

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:19

of the proof is mechanical, we do not include the entire proof in the following. Instead,
we highlight a few representative cases here.

Constants. The rules for evaluating constants do not change the state under both
standard and extended lazy evaluation. Thus, the correspondence property is trivially
satisfied.

Variables. Using the evaluation rules, suppose that �SS, x� → S ′
S, σ [x], and �SL, x� →

S ′
L, ([x → σ [x]], x). From the induction hypothesis, assume that P(SS, SL) and P(S ′

S, S ′
L)

are true. Given that, we need to show that P(S ′
S, S ′′

L) is true, where S ′′
L is the state that

results from evaluating the thunk ([x → σ [x]], x). This is obvious since the extended lazy
evaluation rule for variables change neither the database, environment, nor the heap.
Furthermore, the definition of force shows that evaluating the thunk ([x → σ [x]], x)
returns σ [x] as in standard evaluation, hence proving the validity of P(S ′

S, S ′′
L).

Unary Expressions. As in the earlier case, suppose that �SS, uop e� → S ′
S, vS under

standard evaluation and �SL, uop e� → S ′
L, (σ, uop e) under extended lazy evaluation.

Let S ′′
L be the state that results from evaluating the thunk (σ, uop e). From the induction

hypothesis, we assume that P(SS, SL) and P(S ′
S, S ′

L) are true. We need to show that
P(S ′

S, S ′′
L) is true. First, from the definition of force , we know that evaluating the thunk

(σ, uop e) results in the same value as vS. Next, we need to show that D ′′
L = D ′

S as a
result of evaluating the thunk. Note that there are three possible scenarios that can
happen as a result of evaluating (σ, uop e). First, if e does not contain a query, then
obviously D ′′

L = D ′
S. Next, if e contains a query, then it is either a write query or a read

query. If it is a write query, then the query is executed immediately as in standard
evaluation, thus D ′′

L = D ′
S. Otherwise, it is a read query. Since read queries do not

change the state of the database, D ′′
L = D ′

S as well.

Binary Expressions. Binary expressions of the form e1 op e2 are similar to unary
expressions, except that we need to consider the case when both expressions contain
queries and the effects on the state of the database when they are evaluated (otherwise,
it is the same situation as unary expressions). For binary expressions, the extended
lazy evaluation rule and the definition of force prescribe that e1 is first evaluated prior
to e2. If e1 contains a write query, then it would already have been executed during
lazy evaluation, since write queries are not deferred. e2 will be evaluated using the
database as a result of evaluating e1, thus will be evaluated the same way as in standard
evaluation. The situation is similar if e1 contains a read query and e2 contains a write
query. On the other hand, if both e1 and e2 contain only read queries, then evaluating
them does not change the state of the database, and the correspondence property is
satisfied.

Read Queries. If the query has previously been evaluated, then the cached result is
returned and no change is induced on the program state, and the property is satisfied.
Otherwise, it is a new read query and a new query identifier is created as a result of
extended lazy evaluation. Evaluating the query identifier using force will execute the
read query against the database. Since the database state is not changed as a result of
read queries, the correspondence property is preserved.

Method Calls. Calls to methods that are either external or internal with side effects
are not deferred under extended lazy evaluation and are thus equivalent to standard
evaluation. For the pure function calls that are deferred, the definition of force for
evaluating such thunks is exactly the same as those for evaluating method calls under
standard evaluation (except for the evaluation of thunk parameters), thus does not
alter program semantics.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:20 A. Cheung et al.

Field Accesses, Array Dereferences, and Object Allocations. Since extended lazy
evaluation does not defer evaluation of these kinds of expressions, the correspondence
property is satisfied.

Statements. Since evaluation of statements is not deferred under extended lazy eval-
uation, the correspondence property for statements is satisfied, as it follows from the
proof for expressions.

6. IMPLEMENTATION

We have implemented a prototype of SLOTH. The SLOTH compiler is built on top of
Polyglot [Nystrom et al. 2003]. We have implemented a query store for the thunk
objects to register and retrieve query results. To issue the batched queries in a single
round-trip, we extended the MySQL JDBC driver to allow executing multiple queries
in one executeQuery call, and the query store uses the batch query driver to issue
queries. Once received by the database, our extended driver executes all read queries
in parallel. In addition, we have also made the following changes to the application
framework to enable them to process thunk objects that are returned by the hosted
application. Our extensions are not language specific and can be applied to other ORM
and application hosting frameworks. Besides the extensions to JDBC driver and JPA
layer, the other changes are optional and were done to further increase query batching
opportunities.

JPA Extensions. We extended the Java Persistence API (JPA) [DeMichiel 2006] to
allow returning thunk objects from calls that retrieve objects from the database. For
example, JPA defines a method Object find(Class, id) that fetches the persistently
stored object of type Class with id as its object identifier. We extended the API with a
new method Thunk<Object> find thunk(Class, id) that performs the same function-
ality except that it returns a thunk rather than the requested object. We implemented
this method in the Hibernate ORM library. The implementation first generates an SQL
query that would be issued to fetch the object from the database, registers the query
with the query store, and returns a thunk object to the caller. Invoking the force
method on the returned thunk object forces the query to be executed, and Hibernate
will then deserialize the result into an object of the requested type before returning to
the caller. Similar extensions are made to other JPA methods. Note that our extensions
are targeted to the JPA, not Hibernate—we implemented them within Hibernate as it
is a popular open-source implementation of JPA and is also used by the applications in
our experiments. The extensions were implemented using about 1000 lines of code.

Spring Extensions. We extended the Spring web application framework to allow
thunk objects to be stored and returned during model construction within the MVC
pattern. This is a minor change that consists of about 100 lines of code.

JSP API Extensions. We extended the JavaServer Pages (JSP) API [Roth and Pelegrı́-
Llopart 2003] to enable thunk operations. In particular, we allow thunk objects to be
returned while evaluating JSP expressions. We also extended the JspWriter class from
the JSP API that generates the output HTML page when a JSP is requested. The class
provides methods to write different types of objects to the output stream. We extended
the class with a writeThunk method that writes thunk objects to the output stream.
writeThunk stores the thunk to be written in a buffer, and thunks in the buffer are not
evaluated until the writer is flushed by the web server (which typically happens when
the entire HTML page is generated). We have implemented our JSP API extensions in
Tomcat, which is a popular open-source implementation of the JSP API. This is also a
minor change that consists of about 200 lines of code.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:21

7. EXPERIMENTS

In this section, we report our experimental results. The goals of the experiments are
to (i) evaluate the effectiveness of SLOTH at batching queries, (ii) quantify the change
in application load times, and (iii) measure the overhead of running applications using
lazy evaluation. All experiments were performed using Hibernate 3.6.5, Spring 3.0.7,
and Tomcat 6 with the extensions mentioned earlier. The web server and applications
were hosted on a machine with 8GB of RAM and a 2.8GHz processor. Data was stored in
an unmodified MySQL 5.5 database with 47GB of RAM and twelve 2.4GHz processors.
All measurements were taken from warm runs after 5 min, for which the JVM had a
chance to perform JIT compilation on the loaded classes. The experiments were run
using Java 1.6.1 Results from cold runs without the warm-up period are within 15% of
the numbers reported. Unless stated, there was a 0.5ms round-trip delay between the
two machines (this is the latency of the group cluster machines). We used the following
applications for our experiments:

—itracker version 3.1.5 [itracker 2014]: itracker is an open-source software issue man-
agement system. The system consists of a Java web application built on top of the
Apache Struts framework and uses Hibernate to manage storage. The project has 10
contributors with 814 Java source files with a total of 99k lines of Java code.

—OpenMRS version 1.9.1 [OpenMRS 2014]: OpenMRS is an open-source medical
record system that has been deployed in numerous countries. The system consists of
a Java web application built on top of the Spring web framework and uses Hibernate
to manage storage. The project has over 70 contributors. The version used consists
of 1326 Java source files with a total of 226k lines of Java code. The system has been
in active development since 2004 and the code illustrates various coding styles for
interacting with the ORM.

We created benchmarks from the two applications by manually examining the source
code to locate all webpage files (html and jsp files). Next, we analyzed the application
to find the URLs that load each of the webpages. This resulted in 38 benchmarks
for itracker and 112 benchmarks for OpenMRS. Each benchmark was run by loading
the extracted URL from the application server via a client that resides on the same
machine as the application server.

We also tested with TPC-C and TPC-W coded in Java [Database Test Suite 2014].
Because the implementations display the query results immediately after issuing them,
there is no opportunity for batching. We use them only to measure the runtime overhead
of lazy evaluation.

7.1. Page Load Experiments

In the first set of experiments, we compared the time taken to load each benchmark from
the original and the SLOTH-compiled versions of the applications. For each benchmark,
we started the web and database servers and measured the time taken to load the entire
page. Each measurement was the average of 5 runs. For benchmarks that require user
inputs (e.g., patient ID for the patient dashboard, project ID for the list of issues to
be displayed), we filled the forms automatically with valid values from the database.
We restarted the database and web servers after each measurement to clear all cached
objects. For OpenMRS, we used the sample database (2GB) provided by the application.
For itracker, we created an artificial database (0.7GB) consisting of 10 projects and 20
users. Each project has 50 tracked issues, and none of the issues has attachments. The

1Java 1.8 supports lambda expressions [Oracle Corporation 2015], which might further reduce the cost of
instantiating thunks. We have not experimented with that feature, as it requires nontrivial engineering
efforts in changing the code generation in SLOTH.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:22 A. Cheung et al.

Fig. 5. itracker benchmark experiment results.

Fig. 6. OpenMRS benchmark experiment results.

application allows users to associate each project with custom scripts or nonstandard
components, although we did not do that for the experiments. We also created larger
versions of these databases (up to 25 GB) and report their performance on selected
benchmarks in Section 7.4, showing that our gains continue to be achievable with
much larger database sizes.

We loaded all benchmarks with the applications hosted on the unmodified web frame-
work and application server, and repeated with the SLOTH-compiled applications hosted
on the SLOTH extended web framework using the ORM library and web server discussed
in Section 6. For all benchmarks, we computed the speedup ratios as

load time of the original application
load time of the SLOTH compiled application

.

Figures 5(a) and 6(a) show the cumulative distribution function (CDF) of the re-
sults, in which we sorted the benchmarks according to their speedups for presentation
purposes (and similarly for other experiments). The detailed results are included in
Appendix D.

The results show that the SLOTH-compiled applications loaded the benchmarks faster
compared to the original applications, achieving up to 2.08× (median 1.27×) faster load
times for itracker and 2.1× (median 1.15×) faster load times for OpenMRS. Figures 5(b)
and 6(b) show the ratio of the number of round-trips to the database, computed as

of database round trips in original application
database round trips in SLOTH version of application

.

For itracker, the minimum number of round-trip reductions was 27 (out of 59 round-
trips) while the maximum reduction was 95 (out of 124 original round-trips). For
OpenMRS, the minimum number of reductions was 18 (out of 100 round-trips) and
the maximum number was 1082 (out of 1705 round-trips). Although these may seem
like large numbers of round-trips for a single webpage, issues such as the 1 + N issue

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:23

Fig. 7. Code fragment from OpenMRS benchmark (encounterDisplay.jsp).

in Hibernate [StackOverflow 2014e] make it quite common for developers to write ap-
plications that issue hundreds of queries to generate a webpage in widely used ORM
frameworks.

Finally, Figures 5(c) and 6(c) show the CDF of the ratio of the total number of queries
issued for the applications. In OpenMRS, the SLOTH-compiled application batched as
many as 68 queries into a single batch. SLOTH was able to batch multiple queries in
all benchmarks, even though the original applications already make extensive use
of the eager and lazy fetching strategies provided by Hibernate. This illustrates the
effectiveness of applying lazy evaluation in improving performance. Examining the
generated query batches, we attribute the performance speedup to the following.

Avoiding Unnecessary Queries. For all benchmarks, the SLOTH-compiled applica-
tions issued fewer total number of queries as compared to the original (ranging from
5%–10% reduction). The reduction is due to the developers’ use of eager fetching to
load entities in the original applications. Eager fetching incurs extra round-trips to the
database to fetch the entities and increases query execution time, and is wasteful if the
fetched entities are not used by the application. As noted in Section 1, it is very difficult
for developers to decide when to load objects eagerly during development. Using SLOTH,
on the other hand, frees the developer from making such decisions while improving
application performance.

Batching Queries. The SLOTH-compiled applications batched a significant number of
queries. For example, as shown in Figure 7, one of the OpenMRS benchmarks loads
observations about a patient’s visit. Observations include height, blood pressure, and
so on; there were about 50 observations fetched for each patient. Loading is done as
follows: (i) all observations are first retrieved from the database (Line 3); (ii) each
observation is iterated over and its corresponding Concept object (i.e., the textual ex-
planation of the observed value) is fetched and stored into a FormField object (Line 4).
The FormField object is then put into the model similar to Figure 1 (Line 10). The model
is returned at the end of the method and the fetched concepts are displayed in the view.

In the original application, the concept entities are lazily fetched by the ORM dur-
ing view generation; each fetch incurs a round-trip to the database. It is difficult to
statically analyze the code to extract the queries that would be executed in the pres-
ence of the authentication check on Line 1; techniques based on static analysis of
programs [Chavan et al. 2011] will require a detailed interprocedural analysis of the
loop body to ensure that the methods invoked are side-effect free in order to apply
loop fission. On the other hand, since the fetched concepts are not used in the method,
the SLOTH-compiled application batches all the concept queries and issues them in a

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:24 A. Cheung et al.

Fig. 8. Throughput experiment results.

single batch along with others. This results in a dramatic reduction in the number of
round-trips and an overall reduction of 1.17× in page load time.

Finally, there are a few benchmarks for which the SLOTH-compiled application issued
more queries than the original, as shown in Figure 6(c). This is because the SLOTH-
compiled application registers queries to the query store when they are encountered
during execution, and all registered queries are executed when a thunk that requires
data to be fetched is subsequently evaluated. However, not all fetched data are used.
The original application, with its use of lazy fetching, avoided issuing those queries,
which results in fewer queries executed. An interesting area for future work is to
explore whether splitting the batched queries into smaller subbatches can eliminate
such unnecessary queries and further improve performance. In sum, while the SLOTH-
compiled application does not necessarily issue the minimal number of queries required
to load each page, our results show that the benefits in reducing network round-trips
outweigh the costs of executing a few extra queries.

7.2. Throughput Experiments

Next, we compared the throughput of the SLOTH-compiled application and the original.
We fixed the number of browser clients; each client repeatedly loaded pages from
OpenMRS for 10 minutes (clients wait until the previous load completes, then load a
new page). As no standard workload was available, the pages were chosen at random
from the list of benchmarks described earlier. We changed the number of clients in
each run, and measured the resulting total throughput across all clients. The results
(averaged across 5 runs) are shown in Figure 8.

The results show that the SLOTH-compiled application has better throughput than
the original, reaching about 1.5× the peak throughput of the original application. This
is expected, as the SLOTH version takes less time to load each page. Interestingly, the
SLOTH version achieves its peak throughput at a lower number of clients compared
to the original. This is because, given our experiment setup, both the database and
the web server were underutilized when the number of clients is low, and throughput
is bounded by network latency. Hence, reducing the number of round-trips improves
application throughput, despite the overhead incurred on the web server from lazy
evaluation. However, as the number of clients increases, the web server becomes CPU

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:25

Fig. 9. Time breakdown of benchmark loading experiments.

bound and throughput decreases. Since the original application does not incur any
CPU overhead, it reaches the throughput at a higher number of clients, although the
overall peak is lower due to network round-trips.

7.3. Time Breakdown Comparisons

Reducing the total number of queries issued by the application reduces one source
of load time. However, there are other of sources of latency. To understand the is-
sues, we measured the amount of time spent in the different processing steps of the
benchmarks: application server processing, database query execution, and network
communication. We first measured the overall load time for loading the entire page.
Then, we instrumented the application server to record the amount of time spent in
processing, and modified our batch JDBC driver to measure the amount of time spent in
query processing on the database server. We attribute the remaining time as network
communication. We ran the experiment across all benchmarks and measured where
time was spent while loading each benchmark, computing the sum of time spent in
each phase across all benchmarks. The results for the two applications are shown in
Figure 9.

For the SLOTH-compiled applications, the results show that the aggregate amount
of time spent in network communication was significantly lower, reducing from 226k
to 105k ms for itracker and 43k to 24k ms for OpenMRS. This is mostly due to the
reduction in network round-trips. In addition, the amount of time spent in executing
queries also decreased. We attribute that to the reduction in the number of queries
executed, and to the parallel processing of batched queries on the database by our
batch driver. However, the portion of time spent in the application server was higher
for the SLOTH-compiled versions due to the overhead of lazy evaluation.

7.4. Scaling Experiments

In the next set of experiments, we study the effects of round-trip reduction on page load
times. We ran the same experiments as in Section 7.1, but varied the network delay
from 0.5ms between the application and database servers (typical value for machines
within the same data center), to 10ms (typical for machines connected via a wide area
network and applications hosted on the cloud). Figure 10 shows the results for the two
applications.

While the number of round-trips and queries executed remained the same as before,
the results show that the amount of speedup dramatically increases as the network

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:26 A. Cheung et al.

Fig. 10. Network scaling experiment results.

Fig. 11. Database scaling experiment results.

round-trip time increases (more than 3× for both applications with round-trip time of
10ms). This indicates that reducing the number of network round-trips is a significant
factor in reducing overall load times of the benchmarks, in addition to reducing the
number of queries executed.

Next, we measured the impact of database size on benchmark load times. In this
experiment, we varied the database size (up to 25GB) and measured the benchmark
load times. Although the database still fits into the memory of the machine, we believe
that this is representative of the way that modern transactional systems are actually
deployed, since if the database working set does not fit into RAM, system performance
drops rapidly as the system becomes I/O bound. We chose two benchmarks that display
lists of entities retrieved from the database. For itracker, we chose a benchmark that
displays the list of user projects (list projects.jsp) and varied the number of projects
stored in the database; for OpenMRS, we chose a benchmark that shows the obser-
vations about a patient (encounterDisplay.jsp), a fragment of which was discussed in
Section 7.1, and varied the number of observations stored. The results are shown in
Figure 11(a) and 11(b), respectively.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:27

Fig. 12. Number of persistent methods identified.

Fig. 13. Performance of SLOTH on two benchmarks as optimizations are enabled. SC = Selective computation,
TC = Thunk Coalescing, BD = Branch Deferral.

The SLOTH-compiled applications achieved lower page load times in all cases, and
they also scaled better as the number of entities increased. This is mostly due to
query batching. For instance, the OpenMRS benchmark batched a maximum of 68, 88,
480, 980, and 1880 queries as the number of database entities increased. Examining
the query logs reveals that queries were batched as discussed in Section 7.1. While the
numbers of queries issued by two versions of the application are the same proportionally
as the number of entities increased, the experiment shows that batching reduces the
overall load time significantly, both because of the fewer round-trips to the database
and the parallel processing of the batched queries. The itracker benchmark exhibits
similar behavior.

7.5. Optimization Experiments

In this experiment, we measured the effects of the optimizations presented in Section 4.
First, we study the effectiveness of selective compilation. Figure 12 shows the number
of methods that are identified as persistent in the two applications. As discussed in
Section 4.1, nonpersistent methods are not compiled to lazy semantics.

Next, we quantify the effects of the optimizations by comparing the amount of time
taken to load the benchmarks. We first measured the time taken to load all benchmarks
from the SLOTH-compiled applications with no optimizations. Next, we turned each of
the optimizations on one at a time: selective compilation (SC), thunk coalescing (TC),
and branch deferral (BD), in that order. We recompiled each time; Figure 13 shows the
resulting load time for all benchmarks as each optimization was turned on.

In both applications, branch deferral is the most effective in improving performance.
This makes sense, as both applications have few statements with externally visible side
effects, which increases the applicability of the technique. In addition, as discussed in
Section 4.2, deferring control flow statements further delays the evaluation of thunks,
which allows more query batching to take place.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:28 A. Cheung et al.

Fig. 14. Overhead experiment results.

Overall, there was more than a 2× difference in load time between having none and
all the optimizations for both applications. Without the optimizations, we would have
lost all the benefits from round-trip reductions, that is, the actual load times of the
SLOTH-compiled applications would have been slower than the original.

7.6. Overhead Experiments

In the final experiment, we measured the overhead of lazy evaluation. We use TPC-
C and TPC-W for this purpose. We chose implementations that use JDBC directly
for database operations and do not cache query results. The TPC-W implementation
is a stand-alone web application hosted on Tomcat. Since each transaction has very
few queries, and the query results are used almost immediately after they are issued
(e.g., printed out on the console in the case of TPC-C and converted to HTML in the
case of TPC-W), there are essentially no opportunities for SLOTH to improve perfor-
mance, making these experiments a pure measure of overhead of executing under lazy
semantics.

We used 20 warehouses for TPC-C (initial size of the database is 23GB). We used
10 clients, with each client executing 10k transactions, and measured the time taken
to finish all transactions. For TPC-W, the database contained 10,000 items (about
1GB on disk), and the implementation omitted the think time. We used 10 emulated
browsers executing 10k transactions each. The experiments were executed on the same
machines as in the previous experiments, with optimizations turned on. Figure 14 show
the results.

As expected, the SLOTH-compiled versions were 5% to 15% slower than the origi-
nal, due to lazy semantics. However, given that the Java virtual machine is not de-
signed for lazy evaluation, we believe that these overheads are reasonable, especially
given the significant performance gains observed in real applications. While query
batching does not improve performance of these benchmarks, some of the benchmarks
might be amenable to query prefetching [Ibrahim and Cook 2006; Ramachandra and
Sudarshan 2012]. However, given that these benchmarks do not perform intensive
computation, that some of the query parameters depend on the results from previously
executed queries (e.g., TPC-C new order and payment transactions), and that some of
these benchmarks do not issue read queries at all (e.g., a webpage that updates pa-
tient records), it is unclear how much performance improvement will be achieved with
prefetching.

7.7. Discussion

Our experiments show that SLOTH can batch queries and improve performance across
different benchmarks. While SLOTH does not execute the batched queries until any of

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:29

their results are needed by the application, other execution strategies are possible.
For instance, each batch can be executed asynchronously as it reaches a certain size,
or periodically based on current load on the database. Choosing the optimal strategy
would be interesting future work.

8. RELATED WORK

In this section, we survey work related to the techniques proposed in SLOTH. We first
review how queries are specified in database applications. Then, we discuss different
means that have been proposed to optimize queries given how they are specified.
Finally, we review how lazy evaluation has been deployed in other contexts.

8.1. Specifying Queries in Database Applications

Traditionally, database management systems (DBMSs) provide a very narrow API
for applications to issue queries: applications invoke an executeQuery function call
with the SQL string passed in as one of the parameters, and subsequently invoke
get-Results to retrieve resulting tuples after the query has been executed by the
DBMS. Such interfaces are usually standardized [Andersen 2014; Microsoft 2015], and
are implemented by the driver library provided by different DBMSs [MySQL 2015;
PostgreSQL 2015].

Embedding SQL text directly in the application code makes the application difficult
to maintain, as application source code is usually written in a general-purpose pro-
gramming language (such as Java or PHP) rather than SQL. Moreover, application
developers who use such interfaces to interact with the DBMS will need to handle
issues such as type mismatches between the application program and the DBMS,
as embodied by the infamous “impedance mismatch” problem [Copeland and Maier
1984].

ORM libraries [Django Project 2014; Ruby on Rails Project 2014; Hibernate
2014a; Microsoft 2014] present an alternative to using traditional DBMS interfaces.
Such libraries abstract query operations (e.g., object retrieval, filtering, aggregation)
into a number of functions (e.g., Java Persistent API [DeMichiel 2006] and active
record [Fowler 2003]) that the application can invoke. Such functions are usually writ-
ten in the same language as the application program. To use such libraries, application
developers first inform the library (such as using XML configuration files) about classes
to be persistently stored, and how they should be stored (essentially the physical de-
sign). After that, developers can access persistently stored objects by writing SQL
queries (and handling serialization in the application) or invoking functions provided
by the ORM. ORM libraries usually implement their APIs by translating the call into
the corresponding SQL query to be executed by the DBMS, and they often include ad-
ditional functionalities such as maintaining object caches in the application program
heap.

While using ORM libraries avoids some of the issues described earlier, the APIs ex-
posed by ORMs are often not as expressive as compared to SQL. For instance, writing
an “arg max” query that retrieves the tuple with the maximum value requires creating
various auxiliary objects to express the criteria [StackOverflow 2014a], although it can
be written as a subquery in SQL. As a result, integrating application and database
query languages has been an active research area. Such languages range from a more
expressive SQL similar to languages for object-oriented DBMSs (e.g., HQL [Hibernate
2015]) in which developers can express queries using an object-oriented syntax, to ex-
tensions to general-purpose languages (e.g., JQS [Iu et al. 2010] and Jaba [Cook and
Wiedermann 2011] on top of Java, LINQ [Meijer et al. 2006] on top of C#), to com-
pletely new languages for writing database applications (e.g., Kleisli [Wong 2000],
Links [Cooper et al. 2006], the functional language proposed by Cooper [2009],

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:30 A. Cheung et al.

Ferry [Grust et al. 2009], UniQL [Shi et al. 2014], and DBPL [Schmidt and Matthes
1994]). Implementations of these languages range from a translation layer from the
extended language constructs to the base language to a new compiler toolchain. While
many of these languages are specifically designed to address the issues associated with
traditional DBMS interfaces and ORMs, they often require developers to learn new
programming paradigms and rewrite existing applications.

8.2. Query Optimization for Database Applications

The traditional interfaces that applications use to interact with the DBMS completely
isolate the application from the DBMS. Because of that, classical compiler optimiza-
tion considers embedded queries as external “black box” function calls that cannot
be optimized. Meanwhile, with no knowledge of how queries are generated by the
application or how query results are to be used, DBMSs have instead focused optimiza-
tion efforts on speeding up query processing. Classical query optimization techniques
that can be applied to database applications include multiquery optimization [Sellis
1988], sharing of intermediate results across multiple queries [Zukowski et al. 2007;
Harizopoulos et al. 2005], and sharing of query plans [Giannikis et al. 2012], among
others.

ORM libraries allow users to indicate when persistent data is to be fetched using
“eager” annotations. As discussed in Section 1, such annotations are often difficult to
use, as the developer needs to anticipate how persistent objects will be used by other
parts of the application.

Rather than relying on developers to provide hints for application optimization,
recent advances in program analysis have sparked new research in co-optimization
of embedded queries and database application code, with focus on converting appli-
cation code fragments into queries, in order to leverage specialized implementations
of relational operators in DBMSs, and analyzing application code to prefetch query
results [Smith 1978] and batch queries. On the one hand, techniques have been de-
veloped based on static analysis of programs to recognize certain code idioms in the
application program (e.g., iterations over persistent collections), with the goal to con-
vert the recognized idioms into SQL queries [Iu et al. 2010; Iu and Zwaenepoel 2010;
Wiedermann et al. 2008; Cheung et al. 2013, 2014b; Ramachandra and Guravannavar
2014]. However, these techniques are often limited to the code idioms that are embed-
ded in the tool itself, and are not able to convert code fragments into queries even if
they are semantically equivalent to the code idioms embedded in the tool. Although
QBS [Cheung et al. 2013, 2014b] does not have that restriction, it is still limited to
queries that are expressible using the theory of ordered relations, as discussed in
the article. However, in contrast to SLOTH, such techniques do not incur any runtime
overhead. Static analysis has also been applied to query batching [Guravannavar and
Sudarshan 2008; Chavan et al. 2011] and remote procedure calls [Yeung and Kelly
2003]. However, as in the case of query conversion, their batching ability is limited due
to the imprecision of static analysis.

Rather than analyzing programs statically, there has also been work done on us-
ing runtime analysis and application monitoring to optimize application-embedded
queries. Such work focuses on prefetching query results and batching queries. For
instance, quantum databases [Roy et al. 2013] reorder transactions using developer
annotations, while the homeostasis protocol [Roy et al. 2015] avoids network com-
munication among multinode DBMSs (thus speeds up the application) by using data
statistics during application execution. They aim to combine queries issued by multiple
concurrent clients, whereas SLOTH batches queries that are issued by the same client
over time, although SLOTH can make use of such techniques to merge SLOTH-generated
query batches from multiple clients for further performance improvement.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:31

There has been work done on query batching by predicting future queries [Bowman
and Salem 2004] and prefetching data [Apache Cayenne 2014; Hibernate 2014b; PHP
2014], although they all require programmer annotations to indicate what and when to
prefetch, unlike SLOTH. Recent works have proposed prefetching queries automatically
by analyzing application code. AutoFetch [Ibrahim and Cook 2006] uses application
profiling to predict the queries that will be issued by the application. Unlike SLOTH,
the benefits provided by this tool will depend on how accurate the collected profile
reflects the actual workload. On the other hand, the work proposed by Ramachandra
and Sudarshan [2012] changes the application such that queries are asynchronously
ahead of time (compared to the original code) as soon as their parameter values (if any)
are available. The amount of performance gain is limited by the amount of computation
that lies between when the query is issued and when the results are used. SLOTH does
not have such limitations.

Finally, there is work on moving application code to execute in the database as stored
procedures to reduce the number of round-trips [Cheung et al. 2012], which is similar
to our goals. In comparison, SLOTH does not require the program state to be distributed.
While such dynamic analysis techniques do not suffer from precision issues, it incurs
some runtime overhead. Thus, it would be interesting to combine both techniques to
achieve a low-overhead, yet high-precision, system.

8.3. Lazy Evaluation

Lazy evaluation was first introduced for lambda calculus [Henderson and Morris 1976],
with one of the goals to increase the expressiveness of the language by allowing pro-
grammers to define infinite data structures and custom control flow constructs. For
instance, an infinitely long list of integers can be specified by splitting the list into
a head and a tail expression, where the head represents the next element to be re-
trieved and the tail represents the remainder of the list. The head expression is eval-
uated only when an element is to be retrieved, likewise for the tail expression. Some
general-purpose programming languages (such as Haskell [Haskell wiki 2015] and
Miranda [Turner 1986]) evaluate expressions lazily by default. Meanwhile, other lan-
guages (such as OCaml [OCaml Tutorial 2015] and Scheme [Takafumi 2015]) support
lazy evaluation by providing additional constructs for programmers to denote expres-
sions to be evaluated lazily.

Lazy evaluation is often implemented using thunks in languages that do not readily
support it [Ingerman 1961; Warth 2007]. In contrast, the extended lazy evaluation
proposed in this article is fundamentally different: rather than its traditional uses,
SLOTH uses lazy evaluation to improve application performance by batching queries;
SLOTH is the first system to do so, to our knowledge. As our techniques are not specific
to Java, they can be implemented in other languages as well, including those that al-
ready support lazy evaluation, by extending the language runtime with query-batching
capabilities.

9. CONCLUSION

In this article, we presented SLOTH, a new compiler and runtime that speeds up database
applications by eliminating round-trips between the application and database servers.
By delaying computation using lazy semantics, our system reduces round-trips to the
database substantially by batching multiple queries and issuing them in a single batch.
Along with a number of optimization techniques, we evaluated SLOTH on different real-
world applications. Our results show that SLOTH outperforms existing approaches in
query batching, and delivers substantial reduction (up to 3×) in application execution
time with modest worst-case runtime overheads.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:32 A. Cheung et al.

APPENDIX

In this appendix, we describe how to evaluate each of the language constructs shown
in Figure 4 under standard and extended lazy evaluation. We furthermore describe
formally the semantics of the force function used in extended lazy evaluation. Following
that, we list the details of the benchmarks used in the experiments.

A. STANDARD EVALUATION SEMANTICS

The semantics of standard evaluation for each of the language constructs are shown
here, where the ∅ symbol represents the null value. The domains of each of the variables
involved are defined in Section 5.2.

Semantics of expressions:

�〈D, σ, h〉, x� → 〈D, σ, h〉, σ [x]
[Variable]

�〈D, σ, h〉, e� → 〈D ′, σ, h′〉, v
�〈D, σ, h〉, e.f � → 〈D ′, σ, h′〉, h′[v, f]

[Field dereference]

�〈D, σ, h〉, c� → 〈D, σ, h〉, c
[Constant]

h′ = h[v → {fi = ∅}], v is a fresh location
�〈D, σ, h〉, {fi = ei}� → 〈D, σ, h′〉, v

[Object allocation]

�〈D, σ, h〉, e1� → 〈D ′, σ, h′〉, v1 �〈D ′, σ, h〉, e2� → 〈D ′′, σ, h′′〉, v2 v1 op v2 = v
�〈D, σ, h〉, e1 op e2� → 〈D ′′, σ, h′′〉, v

[Binary]

�〈D, σ, h〉, e� → 〈D ′, σ, h′〉, v1 uop v1 = v
�〈D, σ, h〉, uop e� → 〈D ′, σ, h′〉, v

[Unary]

�〈D, σ, h〉, e� → 〈D ′, σ, h′〉, v �〈D ′, [x → v], h′〉, s� → 〈D ′′, σ ′′, h′′〉
s is the body of f (x)

�〈D, σ, h〉, f (e)� → 〈D ′′, σ ′′, h′′〉, σ [@]
[Method]

�〈D, σ, h〉, ei� → 〈D ′, σ, h′〉, vi �〈D ′, σ, h′〉, ea� → 〈D ′′, σ, h′′〉, va

�〈D, σ, h〉, ea[ei]� → 〈D ′′, σ, h′′〉, h′′[va, vi]
[Array deference]

�〈D, σ, h〉, e� → 〈D ′, σ, h′〉, v
�〈D, σ, h〉, R(e)� → 〈D ′, σ, h′〉, D ′[v]

[Read query]

�〈D, σ, h〉, e� → 〈D ′, σ, h′〉, v update (D ′, v) = D ′′

�〈D, σ, h〉, W(e)� → 〈D ′′, σ, h′〉 [Write query]

Semantics of statements:

�〈D, σ, h〉, skip� → 〈D, σ, h〉 [Skip]

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:33

�〈D, σ, h〉, e� → 〈D ′, σ, h′〉, v �〈D ′, σ, h′〉, el� → 〈D ′′, σ, h′′〉, vl

�〈D, σ, h〉, el := e� → 〈D ′′, σ [vl → v], h′′〉 [Assignment]

�〈D, σ, h〉, e� → 〈D ′, σ, h′, True〉 �〈D ′, σ, h′〉, s1� → 〈D ′′, σ ′, h′′〉
�〈D, σ, h〉, if (e) then s1 else s2� → 〈D ′′, σ ′, h′′〉 [Conditional–true]

�〈D, σ, h〉, e� → 〈D ′, σ, h′, False〉 �〈D ′, σ, h′〉, s2� → 〈D ′′, σ ′, h′′〉
�〈D, σ, h〉, if (e) then s1 else s2� → 〈D ′′, σ ′, h′′〉 [Conditional–false]

�〈D, σ, h〉, s� → 〈D ′, σ ′, h′〉
�〈D, σ, h〉, while (True) do s� → 〈D ′, σ ′, h′〉 [Loop]

�〈D, σ, h〉, s1� → 〈D ′, σ ′, h′〉 �〈D ′, σ ′, h′〉, s2� → 〈D ′′, σ ′′, h′′〉
�〈D, σ, h〉, s1 ; s2� → 〈D ′′, σ ′′, h′′〉 [Sequence]

As discussed in Section 5, each of the evaluation rules describes the result of evaluat-
ing a program construct in the language (shown below the line), given the intermediate
steps that are taken during evaluation (shown above the line). The rules for standard
evaluation are typical of imperative languages. In general, each of the rules for expres-
sions returns a (possibly changed) state, along with the result of the evaluation.

As an example, to evaluate a variable x, we simply look up its value using the envi-
ronment σ and return the corresponding value. To evaluate a field deference expression
e.f, we first evaluate the expression e to value v, then return the expression stored in
the heap at location v with offset f. Finally, to evaluate a read query R(e), we first
evaluate the query expression e to a value v (i.e., the SQL query), then look up the
value stored in the database.

On the other hand, the rules for evaluating statements return only a new program
state and no values. Note that, to evaluate a write query W(e), we use the update
function to perform the change on the database after evaluating the query expression.
The changed database is then included as part of the modified state.

B. EXTENDED LAZY EVALUATION SEMANTICS

We now define the semantics of extended lazy evaluation. As described in Section 3.2,
we model thunks using a pair (σ, e), which represents the expression e that is delayed,
along with the environment σ that is used to look up expression values when the
delayed expression is evaluated. Furthermore, we define a function force : Q × D × t →
Q × D × e that takes in a query store Q, a database D, and a thunk t. The function
returns a (possibly modified) query store and a database along with the result of thunk
evaluation (a value v). We show the evaluation rules here.

Semantics of expressions:

�〈Q, D, σ, h〉, x� → 〈Q, D, σ, h〉, ([x → σ [x]], x)
[Variable]

�〈Q, D, σ, h〉, e� → 〈Q ′
, D ′, σ, h′〉, (σ ′, e) force (Q, D, (σ ′, e)) → v

�〈Q, D, σ, h〉, e.f� → 〈Q ′
, D ′, σ, h′〉, h′[v, f]

[Field deference]

�〈Q, D, σ, h〉, c� → 〈Q, D, σ, h〉, ([], c)
[Constant]

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:34 A. Cheung et al.

h′ = h[v → {fi = ∅}], v is a fresh location
�〈Q, D, σ, h〉, {fi = ei}� → 〈Q, D, σ, h′〉, ([], v)

[Object allocation]

�〈Q, D, σ, h〉, e1� → 〈Q ′
, D ′, σ, h′〉, (σ ′, e1)

�〈Q′
, D ′, σ, h′〉, e2� → 〈Q′′

, D ′′, σ, h′′〉, (σ ′′, e2)
�〈Q, D, σ, h〉, e1 op e2� → 〈Q′′

, D ′′, σ, h′′〉, (σ ′ ∪ σ ′′, e1 op e2)
[Binary]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ, e)

�〈Q, D, σ, h〉, uop e� → 〈Q′
, D ′, σ, h′〉, (σ, uop e)

[Unary]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ ′, h′〉, (σ ′, e)

�〈Q, D, σ, h〉, f (e)� → 〈Q′
, D ′, σ, h′〉, ([x → (σ ′, e)], f (x))

[Method–internal and pure]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ ′, e)

�〈Q′
, D ′, [x → (σ ′, e)], h′〉, s� → 〈Q′′

, D ′′, σ ′′, h′′〉
s is the body of f (x)

�〈Q, D, σ, h〉, f (e)� → 〈Q′′
, D ′′, σ ′′, h′′〉, σ ′′[@]

[Method–internal and impure]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ ′, e)

�〈Q′
, D ′, [x → (σ ′, e)], h′〉, s� → 〈Q′′′

, D ′′′, σ ′′, h′′〉
force (Q′

, D ′, (σ ′, e)) → Q′′
, D ′′, v

s is the body of f (x)

�〈Q, D, σ, h〉, f (e)� → 〈Q′′′
, D ′′′, σ ′′, h′′〉, σ ′′[@]

[Method–external]

�〈Q, D, σ, h〉, ei� → 〈Q′
, D ′, σ, h′〉, (σ ′, ei)

�〈Q′
, D ′, σ, h′〉, ea� → 〈Q′′

, D ′′, σ, h′′〉, (σ ′′, ea)
force (Q′′

, D ′′, (σ ′, ei)) → Q′′′
, D ′′′, vi

force (Q′′′
, D ′′′, (σ ′′, ea)) → Q′′′′

, D ′′′′, va

�〈Q, D, σ, h〉, ea[ei]� → 〈Q′′′′
, D ′′′′, σ, h′′〉, h′′[va, vi]

[Array deference]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ ′, e) Q′′′ = Q′′[id → (v,∅)]

force (Q′
, D ′, (σ ′, e)) → Q′′

, D ′′, v id is a fresh identifier
�〈Q, D, σ, h〉, R(e)� → 〈Q′′′

, D ′′, σ, h′〉, ([], id)
[Read query]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ ′, e)

force (Q′
, D ′, (σ ′, e)) → Q′′

, D ′′, v
update(D ′′, v) → D ′′′

∀id ∈ Q′′
. Q′′′[id] =

{
D ′′′[Q′′[id].s] if Q′′[id].rs = ∅
Q′′[id].rs otherwise

�〈Q, D, σ, h〉, W(e)� → 〈Q′′′
, D ′′′, σ, h′〉 [Write query]

Semantics of statements:

�〈Q, D, σ, h〉, skip� → 〈Q, D, σ, h〉 [Skip]

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:35

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ ′, e)

�〈Q′
, D ′, σ, h′〉, el� → 〈Q′′

, D ′′, σ, h′′〉, vl

�〈Q, D, σ, h〉, el := e� → 〈Q′′
, D ′′, σ [vl → (σ ′, e)], h′′〉 [Assignment]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ ′, e)

force (Q′
, D ′, (σ ′, e)) → Q′′

, D ′′, True
�〈Q′′

, D ′′, σ, h′〉, s1� → 〈Q′′′
, D ′′, σ ′, h′′〉

�〈Q, D, σ, h〉, if(e) then s1 else s2� → 〈Q′′′
, D ′′′, σ ′, h′′〉 [Conditional–true]

�〈Q, D, σ, h〉, e� → 〈Q′
, D ′, σ, h′〉, (σ ′, e)

force (Q′
, D ′, (σ ′, e)) → Q′′

, D ′′, False
�〈Q′′

, D ′′, σ, h′〉, s2� → 〈Q′′′
, D ′′, σ ′, h′′〉

�〈Q, D, σ, h〉, if(e) then s1 else s2� → 〈Q′′′
, D ′′′, σ ′, h′′〉 [Conditional–false]

�〈Q, D, σ, h〉, s� → 〈Q′
, D ′, σ ′, h′〉

�〈Q, D, σ, h〉, while(True) do s� → 〈Q′
, D ′, σ ′, h′〉 [Loop]

�〈Q, D, σ, h〉, s1� → 〈Q′
, D ′, σ ′, h′〉 �〈Q, D ′, σ ′, h′〉, s2� → 〈Q′′

, D ′′, σ ′′, h′′〉
�〈Q, D, σ, h〉, s1 ; s2� → 〈Q′′

, D ′′, σ ′′, h′′〉 [Sequence]

The evaluation rules for extended lazy semantics are similar to those for standard
evaluation, except for creation of thunk objects and using force to evaluate thunks. For
instance, to evaluate a variable x , we create a new thunk with the delayed expression
being x itself. In addition, the thunk contains a new environment that maps x to its
value under the current environment, in order for the appropriate value to be returned
when the thunk is evaluated. On the other hand, to evaluate a binary expression, we
first create thunks for the operands. Then, we create another thunk for the binary
operation itself, with the environment being the combination of the environments from
the two thunks from the operands.

As discussed in Section 3.4, method calls are evaluated using three different rules
based on the kind of method that is invoked. For methods that are internal and pure, we
first evaluate the actual parameters of the call (by creating thunks to wrap around each
of the actuals), then create another thunk with the delayed expression being the call
itself, as shown in the rule [Method–internal and pure]. However, since we cannot delay
calls to external methods or methods that have side effects, we evaluate such calls by
first evaluating the parameters, then either calling the specialized method that takes
thunk parameters (if the method is internal, as shown in the rules [Method–internal
and impure]), or evaluating the parameter thunks and calling the external method
directly, as shown in the rule [Method–external].

Finally, the evaluation rules for statements are also similar to those under standard
evaluation. The most complex one is that for write queries, for which we first evaluate
the query expression thunk. Then, before executing the actual write query, we first
execute all the read queries that have been delayed and not executed in the query store
due to query batching. This is shown in the evaluation rule by issuing queries to the
database for all the query identifiers that have not been executed, and changing the
contents of the query store as a result. After that, we execute the write query on
the database, and use the update function to change to the database contents, as in
standard evaluation.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:36 A. Cheung et al.

The formalism used to present the evaluation rules for basic extended lazy evalua-
tion can also formalize the optimizations discussed in Section 4; we omit the details
here.

C. SEMANTICS OF THUNK EVALUATIONS

Next, we define the full semantics of the force function that is used to evaluate thunks,
as mentioned earlier in Section 5.3.

force (Q, D, ([x → σ [x]], x)) → Q, D, σ [x]
[Variable]

force (Q, D, (σ, c)) → Q, D, c
[Constant]

force (Q, D, (σ, e1)) → Q′
, D ′, v1 force (Q′

, D ′, (σ, e2)) → Q′′
, D ′′, v2

v1 op v2 = v

force (Q, D, (σ, e1 op e2)) → Q′′
, D ′′, v

[Binary]

force (Q, D, (σ, e)) → Q′
, D ′, v1 uop v1 → v

force (Q, D, (σ, uop e)) → Q′
, D ′, v

[Unary]

force (Q, D, (σ, e)) → Q′
, D ′, v

�〈Q′
, D ′, [x → v], h〉, s� → 〈Q′′

, D ′′, σ ′, h〉
s is the body of f (x)

force (Q, D, ([x → (σ, e)], f(x)) → Q′′
, D ′′, σ ′[@]

[Method–internal and pure]

Q[id].rs
= ∅
force (Q, D, (σ, id)) → Q, D, Q[id].rs

[Issued query]

Q[id].rs = ∅ ∀id ∈ Q . Q′[id] =
{

D[Q[id].s] if Q[id].rs = ∅
Q[id].rs otherwise

force(Q, D, ([], id)) → Q′
, D, Q′[id].rs

[Unissued query]

These evaluation rules show what happens when thunks are evaluated. The rules
are defined based on the type of expression that is delayed. For instance, to evaluate a
thunk with a variable expression, we simply look up the value of the variable from the
environment that is embedded in the thunk. For thunks that contain method calls, we
first evaluate each of the parameters by calling force , then we evaluate the method body
itself, as in standard evaluation. Note that since we create thunks only for pure method
calls, the heap remains unchanged after the method returns. Finally, for read queries,
force either returns the result set that is stored in the query store if the corresponding
query has already been executed, as described in the rule [Issued query], or issues all
the unissued queries in the store as a batch before returning the results, as described
in the rule [Unissued query].

D. EXPERIMENT DETAILS

In the following, we list the details of experiments as discussed in Section 7.1. For the
original application, one query is issued per network round-trip.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:37

Fig. 15. OpenMRS load time detail results.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

8:38 A. Cheung et al.

Fig. 15. Continued

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:39

Fig. 16. itracker load time detail results.

REFERENCES

Akamai. 2010. PhoCusWright/Akamai Study on Travel Site Performance. Retrieved April 21, 2016 from
http://www.akamai.com/html/about/press/releases/2010/press_061410.html.

Lance Andersen. 2014. JSR 221: JDBC 4.0 API Specification. http://jcp.org/en/jsr/detail?id=221. (2014).
Apache Cayenne. 2014. Apache Cayenne ORM documentation. Retrieved April 21, 2016 from http://cayenne.

apache.org/docs/3.0/prefetching.html. (2014).
Ivan T. Bowman and Kenneth Salem. 2004. Optimization of query streams using semantic prefetching. In

Proceedings of ACM SIGMOD/PODS Conference (SIGMOD’04). 179–190.
Mahendra Chavan, Ravindra Guravannavar, Karthik Ramachandra, and S. Sudarshan. 2011. Program

transformations for asynchronous query submission. In Proceedings of IEEE International Conference
on Data Engineering (ICDE’11). 375–386.

Alvin Cheung, Owen Arden, Samuel Madden, and Andrew C. Myers. 2012. Automatic partitioning of
database applications. Proceedings of the VLDB Endowment (PVLDB 12) 5, 11, 1471–1482.

Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. 2014a. Sloth: Being lazy is a virtue (when
issuing database queries). In Proceedings of ACM SIGMOD/PODS Conference (SIGMOD’14). 931–
942.

Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden, and Andrew C. Myers. 2014b. Using
program analysis to improve database applications. IEEE Data Engineering Bulletin 37, 1, 48–59.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

http://www.akamai.com/html/about/press/releases/2010/press_061410.html
http://jcp.org/en/jsr/detail?id$=$221
http://cayenne.apache.org/docs/3.0/prefetching.html
http://cayenne.apache.org/docs/3.0/prefetching.html

8:40 A. Cheung et al.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing database-backed applications
with query synthesis. In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’13). 3–14.

William R. Cook and Ben Wiedermann. 2011. Remote batch invocation for SQL databases. In Proceedings of
Database Programming Languages.

Ezra Cooper. 2009. The script-writer’s dream: How to write great SQL in your own language, and be sure
it will succeed. In Proceedings of the International Symposium on Database Programming Languages
(DBPL’09). 36–51.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web programming without tiers.
In Proceedings of International Symposium on Formal Methods for Components and Objects. 266–
296.

George Copeland and David Maier. 1984. Making smalltalk a database system. In Proceedings of ACM
SIGMOD/PODS Conference (SIGMOD’84). 316–325.

Database Test Suite. 2014. TPC-C and TPC-W reference implementations. Retrieved April 21, 2016 from
http://sourceforge.net/apps/mediawiki/osdldbt. (2014).

Linda DeMichiel. 2006. JSR 220: Enterprise JavaBeans 3.0 specification (persistence). Retrieved April 21,
2016 from http://jcp.org/aboutJava/communityprocess/final/jsr220.

Django Project. 2014. Django web framework. Retrieved April 21, 2016 from http://www.djangoproject.com.
M. Fowler. 2003. Patterns of Enterprise Application Architecture. Addison-Wesley, New York, NY.
Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB: Killing one thousand queries

with one stone. Proceedings of the VLDB Endowment (PVLDB’12) 5, 6, 526–537.
Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. 2009. FERRY: Database-supported program

execution. In Proceedings of ACM SIGMOD/PODS Conference (SIGMOD’09). 1063–1066.
Ravindra Guravannavar and S. Sudarshan. 2008. Rewriting procedures for batched bindings. Proceedings

of the VLDB Endowment (PVLDB’08) 1, 1, 1107–1123.
Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. 2005. QPipe: A simultaneously

pipelined relational query engine. In Proceedings of ACM SIGMOD/PODS Conference (SIGMOD’95).
383–394.

Haskell wiki. 2015. Lazy evaluation in Haskell. Retrieved April 21, 2016 from http://wiki.haskell.org/
Lazy_evaluation.

Peter Henderson and James H. Morris, Jr. 1976. A lazy evaluator. In Proceedings of ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’76). 95–103.

Hibernate. 2014a. Hibernate – relational persistence for idiomatic Java. Retrieved April 21, 2016 from
http://hibernate.org/ hibernate.html.

Hibernate. 2014b. Hibernate fetching strategies. Retrieved April 21, 2016 from http://docs.jboss.org/
hibernate/orm/4.3/manual/en-US/html/ch20.html.

Hibernate. 2015. HQL: The Hibernate Query Language. Retrieved April 21, 2016 from http://docs.jboss.org/
hibernate/orm/5.0/manual/en-US/html/ch16.html. (2015).

Ali Ibrahim and William R. Cook. 2006. Automatic prefetching by traversal profiling in object persistence
architectures. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP’06).
50–73.

Peter Zilahy Ingerman. 1961. Thunks: A way of compiling procedure statements with some comments on
procedure declarations. Communications of the ACM 4, 1, 55–58.

itracker. 2014. itracker issue management system. Retrieved April 21, 2016 from http://itracker. sourceforge.
net.

Ming-Yee Iu, Emmanuel Cecchet, and Willy Zwaenepoel. 2010. JReq: Database queries in imperative lan-
guages. In Proceedings of International Conference on Compiler Construction (CC’10). 84–103.

Ming-Yee Iu and Willy Zwaenepoel. 2010. HadoopToSQL: A mapReduce query optimizer. In Proceedings of
the European Conference on Computer Systems (EuroSys’10). 251–264.

Simon L. Peyton Jones and André L. M. Santos. 1998. A transformation-based optimiser for Haskell. Science
of Computer Programming 32, 1–3, 3–47.

Gary A. Kildall. 1973. A unified approach to global program optimization. In Proceedings of ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’73). 194–206.

Greg Linden. 2006. Marissa Mayer at Web 2.0. Retrieved April 21, 2016 from http://glinden.blogspot.com/
2006/11/marissa-mayer-at-web-20.html. (2006).

E. Meijer, B. Beckman, and G. Bierman. 2006. LINQ: Reconciling objects, relations and XML in the .NET
framework. In Proceedings of ACM SIGMOD/PODS Conference (SIGMOD’06). 706–706.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

http://sourceforge.net/apps/mediawiki/osdldbt
http://jcp.org/aboutJava/communityprocess/final/jsr220
http://www.djangoproject.com
http://wiki.haskell.org/ ignorespaces Lazy_evaluation
http://wiki.haskell.org/ ignorespaces Lazy_evaluation
http://hibernate.org/ ignorespaces hibernate.html
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch20.html
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch20.html
http://docs.jboss.org/hibernate/orm/5.0/manual/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/5.0/manual/en-US/html/ch16.html
http://itracker.sourceforge.net
http://itracker.sourceforge.net
http://glinden.blogspot.com/ ignorespaces 2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/ ignorespaces 2006/11/marissa-mayer-at-web-20.html

Sloth: Being Lazy Is a Virtue (When Issuing Database Queries) 8:41

Microsoft. 2014. Microsoft Entity Framework. Retrieved April 21, 2016 from http://msdn.microsoft.com/
en-us/data/ef.aspx.

Microsoft. 2015. ODBC Programmer’s Reference. Retrieved April 21, 2016 from http://msdn.microsoft.com/
en-us/library/windows/desktop/ms714177(v=vs.85).aspx.

MySQL. 2015. MySQL ODBC Connector. Retrieved April 21, 2016 from http://dev.mysql.com/downloads/
connector/odbc.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. 2003. Polyglot: An extensible compiler
framework for Java. In Proceedings of International Conference on Compiler Construction (CC’03). 138–
152.

OCaml Tutorial. 2015. Functional Programming in OCaml. Retrieved April 21, 2016 from http://ocaml.org/
learn/tutorials/functional_programming.html.

OpenMRS. 2014. OpenMRS medical record system. Retrieved April 21, 2016 from http://www.openmrs.org.
Oracle Corporation. 2015. Java 1.8 Lambda Expressions. Retrieved April 21, 2016 from http://docs.oracle.

com/javase/tutorial/java/javaOO/lambdaexpressions.html.
PHP. 2014. PHP query prefetch strategies. Retrieved April 21, 2016 from http://php.net/manual/en/

function.oci-set-prefetch.php.
PostgreSQL. 2015. PostgreSQL ODBC driver. Retrieved April 21, 2016 from http://odbc.postgresql.org.
Karthik Ramachandra and Ravindra Guravannavar. 2014. Database-aware program optimization via static

analysis. IEEE Data Engineering Bulletin 37, 1, 60–69.
Karthik Ramachandra and S. Sudarshan. 2012. Holistic optimization by prefetching query results. In Pro-

ceedings of ACM SIGMOD/PODS Conference (SIGMOD’12). 133–144.
Mark Roth and Eduardo Pelegrı́-Llopart. 2003. JSR 152: JavaServer Pages 2.0 specification. Retrieved

April 21, 2016 from http://jcp.org/aboutJava/communityprocess/final/jsr152.
Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate Foster, and Johannes

Gehrke. 2015. The homeostasis protocol: Avoiding transaction coordination through program analysis.
In Proceedings of ACM SIGMOD/PODS Conference (SIGMOD’15). 1311–1326.

Sudip Roy, Lucja Kot, and Christoph Koch. 2013. Quantum databases. In Proceedings of Conference on
Innovative Data Systems Research (CIDR’13).

Ruby on Rails Project. 2014. Ruby on Rails. Retrieved April 21, 2016 from http://rubyonrails.org.
Joachim W. Schmidt and Florian Matthes. 1994. The DBPL project: Advances in modular database program-

ming. Information Systems 19, 2, 121–140.
Timos K. Sellis. 1988. Multiple-query optimization. ACM Transactions on Database Systems 13, 1, 23–52.
Xiaogang Shi, Bin Cui, Gillian Dobbie, and Beng Chin Ooi. 2014. Towards unified ad-hoc data processing. In

Proceedings of ACM SIGMOD/PODS Conference (SIGMOD’14). 1263–1274.
Alan Jay Smith. 1978. Sequentiality and prefetching in database systems. ACM Transactions on Database

Systems 3, 3, 223–247.
StackOverflow. 2014a. Get record with max id, using Hibernate Criteria. Retrieved April 21, 2016 from

http://stackoverflow.com/ questions/3900105/get-record-with-max-id-using-hibernate-criteria.
StackOverflow. 2014b. Hibernate performance issue. Retrieved April 21, 2016 from http://stackoverflow.com/

questions/5155718/hibernate-performance.
StackOverflow. 2014c. Network latency under Hibernate/c3p0/MySQL. Retrieved April 21, 2016 from

http://stackoverflow.com/ questions/3623188/network-latency-under-hibern ate-c3p0-mysql.
StackOverflow. 2014d. Round trip/network latency issue with the query generated by hibernate. Re-

trieved April 21, 2016 from http://stackoverflow.com/questions/13789901/round-trip-network-latency-
issue-with-the-query-generated-by-hibernate.

StackOverflow. 2014e. What is the n+1 selects issue? Retrieved April 21, 2016 from http://stackoverflow.
com/questions/97197/what-is-the-n1-selects-issue.

Shido Takafumi. 2015. Lazy evaluation in Scheme. Retrieved April 21, 2016 from http://www.shido.info/
lisp/scheme_lazy_e.html.

David Turner. 1986. An overview of Miranda. SIGPLAN Notices 21, 12, 158–166.
Alessandro Warth. 2007. LazyJ: Seamless lazy evaluation in Java. Proceedings of the FOOL/WOOD

Workshop.
Ben Wiedermann, Ali Ibrahim, and William R. Cook. 2008. Interprocedural query extraction for transparent

persistence. In Proceedings of ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’08). 19–36.

Limsoon Wong. 2000. Kleisli, a functional query system. Journal of Functional Programming 10, 1, 19–56.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

http://msdn.microsoft.com/ ignorespaces en-us/data/ef.aspx
http://msdn.microsoft.com/ ignorespaces en-us/data/ef.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms714177(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms714177(v=vs.85).aspx
http://dev.mysql.com/downloads/connector/odbc
http://dev.mysql.com/downloads/connector/odbc
http://ocaml.org/learn/tutorials/functionalprogramming.html
http://ocaml.org/learn/tutorials/functionalprogramming.html
http://www.openmrs.org
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://php.net/manual/en/function.oci-set-prefetch.php
http://php.net/manual/en/function.oci-set-prefetch.php
http://odbc.postgresql.org
http://jcp.org/aboutJava/communityprocess/final/jsr152
http://rubyonrails.org
http://stackoverflow.com/ ignorespaces questions/3900105/get-record-with-max-id-using-hibernate-criteria
http://stackoverflow.com/ ignorespaces questions/5155718/hibernate-performance
http://stackoverflow.com/ ignorespaces questions/5155718/hibernate-performance
http://stackoverflow.com/ ignorespaces questions/3623188/network-latency-under-hibern ignorespaces ate-c3p0-mysql
http://stackoverflow.com/questions/13789901/round-trip-network-latency-issue-with-the-query-generated-by-hibernate
http://stackoverflow.com/questions/13789901/round-trip-network-latency-issue-with-the-query-generated-by-hibernate
http://stackoverflow.com/questions/97197/what-is-the-n1-selects-issue
http://stackoverflow.com/questions/97197/what-is-the-n1-selects-issue
http://www.shido.info/lisp/schemelazye.html
http://www.shido.info/lisp/schemelazye.html

8:42 A. Cheung et al.

Kwok Cheung Yeung and Paul H. J. Kelly. 2003. Optimising Java RMI programs by communication restruc-
turing. In Middleware, Lecture Notes in Computer Science, Vol. 2672. 324–343.

Fubo Zhang and Erik H. D’Hollander. 2004. Using hammock graphs to structure programs. IEEE Transac-
tions on Software Engineering 30, 4, 231–245.

Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. 2007. Cooperative scans: Dynamic bandwidth
sharing in a DBMS. In Proceedings of the International Conference on Very Large Data Bases (VLDB’07).
723–734.

Received February 2015; revised October 2015; accepted February 2016

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 8, Publication date: June 2016.

